Hydrogen Bond Networks Formed by Several Dozens to Hundreds of Molecules in the Gas Phase

[1]  J. Conradie,et al.  Structures and spectroscopy of the ammonia eicosamer, (NH3)n=20. , 2018, The Journal of chemical physics.

[2]  R. Signorell,et al.  Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation. , 2018, Physical chemistry chemical physics : PCCP.

[3]  J. Kuo,et al.  Hydrogen bond network structures of protonated short-chain alcohol clusters. , 2018, Physical chemistry chemical physics : PCCP.

[4]  E. Williams,et al.  Structural and electrostatic effects at the surfaces of size- and charge-selected aqueous nanodrops† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c7sc00481h Click here for additional data file. , 2017, Chemical science.

[5]  A. Malloum,et al.  Structures and spectroscopy of medium size protonated ammonia clusters at different temperatures, H+(NH3)10-16. , 2017, The Journal of chemical physics.

[6]  J. Kuo,et al.  An ab initio anharmonic approach to study vibrational spectra of small ammonia clusters. , 2016, Physical chemistry chemical physics : PCCP.

[7]  A. Malloum,et al.  Structures and spectroscopy of protonated ammonia clusters at different temperatures. , 2016, Physical chemistry chemical physics : PCCP.

[8]  E. Williams,et al.  Delayed Onset of Crystallinity in Ion-Containing Aqueous Nanodrops. , 2016, Journal of the American Chemical Society.

[9]  J. Kuo,et al.  Exploration of hydrogen bond networks and potential energy surfaces of methanol clusters using a two-stage clustering algorithm. , 2016, Physical chemistry chemical physics : PCCP.

[10]  Tomohiro Kobayashi,et al.  Hydrogen-bonded ring closing and opening of protonated methanol clusters H(+)(CH3OH)(n) (n = 4-8) with the inert gas tagging. , 2015, Physical Chemistry, Chemical Physics - PCCP.

[11]  Mark A. Johnson,et al.  Snapshots of Proton Accommodation at a Microscopic Water Surface: Understanding the Vibrational Spectral Signatures of the Charge Defect in Cryogenically Cooled H(+)(H2O)(n=2-28) Clusters. , 2015, The journal of physical chemistry. A.

[12]  S. Yamaguchi Development of single-channel heterodyne-detected sum frequency generation spectroscopy and its application to the water/vapor interface. , 2015, The Journal of chemical physics.

[13]  S. Xantheas,et al.  Infrared detection of (H2O)20 isomers of exceptional stability: a drop-like and a face-sharing pentagonal prism cluster. , 2014, Physical chemistry chemical physics : PCCP.

[14]  Mark A. Johnson,et al.  Vibrational spectral signature of the proton defect in the three-dimensional H+(H2O)21 cluster , 2014, Science.

[15]  A. Fujii,et al.  Infrared spectroscopy of large-sized neutral and protonated ammonia clusters. , 2014, Physical chemistry chemical physics : PCCP.

[16]  Johannes M. Dieterich,et al.  A size resolved investigation of large water clusters. , 2014, Physical chemistry chemical physics : PCCP.

[17]  A. Fujii,et al.  Infrared spectroscopy of large protonated water clusters H+(H2O)20–50 cooled by inert gas attachment , 2013 .

[18]  Sergey Kazachenko,et al.  Methanol clusters (CH3OH)n: putative global minimum-energy structures from model potentials and dispersion-corrected density functional theory. , 2013, The Journal of chemical physics.

[19]  Tomohiro Kobayashi,et al.  Structures of hydrogen bond networks formed by a few tens of methanol molecules in the gas phase: size-selective infrared spectroscopy of neutral and protonated methanol clusters. , 2013, Physical chemistry chemical physics : PCCP.

[20]  A. Fujii,et al.  Infrared spectroscopic studies on hydrogen-bonded water networks in gas phase clusters , 2013 .

[21]  M. Nsangou,et al.  Structures of protonated methanol clusters and temperature effects. , 2013, The Journal of chemical physics.

[22]  P. Slavíček,et al.  A Fully Size-Resolved Perspective on the Crystallization of Water Clusters , 2012, Science.

[23]  E. Williams,et al.  Effects of ions on hydrogen-bonding water networks in large aqueous nanodrops. , 2012, Journal of the American Chemical Society.

[24]  H. Witek,et al.  Infrared absorption of methanol clusters (CH3OH)n with n = 2-6 recorded with a time-of-flight mass spectrometer using infrared depletion and vacuum-ultraviolet ionization. , 2011, The Journal of chemical physics.

[25]  A. Fujii,et al.  Infrared photodissociation spectroscopy of H(+)(H2O)6·M(m) (M = Ne, Ar, Kr, Xe, H2, N2, and CH4): messenger-dependent balance between H3O(+) and H5O2(+) core isomers. , 2011, Physical chemistry chemical physics : PCCP.

[26]  J. Prell,et al.  Structural and electric field effects of ions in aqueous nanodrops. , 2011, Journal of the American Chemical Society.

[27]  A. Fujii,et al.  Spectral signatures of four-coordinated sites in water clusters: infrared spectroscopy of phenol-(H2O)n (∼20 ≤ n ≤ ∼50). , 2011, The journal of physical chemistry. A.

[28]  A. Fujii,et al.  Infrared spectra and hydrogen-bonded network structures of large protonated water clusters H+(H2O)n (n=20-200). , 2010, Angewandte Chemie.

[29]  M. F. Bush,et al.  Sulfate ion patterns water at long distance. , 2010, Journal of the American Chemical Society.

[30]  K. Honma,et al.  Crystalline structures in large ammonia clusters studied by IR cavity ringdown spectroscopy and a density functional theory calculation , 2010 .

[31]  Pavel Hobza,et al.  Non-Covalent Interactions: Theory and Experiment , 2009 .

[32]  A. Fujii,et al.  Infrared spectroscopy of phenol-(H2O)(n>10): structural strains in hydrogen bond networks of neutral water clusters. , 2009, The journal of physical chemistry. A.

[33]  M. Duncan,et al.  Infrared spectroscopy of perdeuterated protonated water clusters in the vicinity of the clathrate cage. , 2009, The journal of physical chemistry. A.

[34]  K. Asmis,et al.  Vibrational signatures of hydrogen bonding in the protonated ammonia clusters NH4(+)(NH3)(1-4). , 2008, The Journal of chemical physics.

[35]  M. F. Bush,et al.  Infrared action spectra of Ca2+(H2O)(11-69) exhibit spectral signatures for condensed-phase structures with increasing cluster size. , 2008, Journal of the American Chemical Society.

[36]  M. Slipchenko,et al.  Evolution of the vibrational spectrum of ammonia from single molecule to bulk. , 2008, The Journal of chemical physics.

[37]  E. Curotto,et al.  Structure and energetics of ammonia clusters (NH3)n (n = 3-20) investigated using a rigid-polarizable model derived from ab initio calculations. , 2008, The journal of physical chemistry. A.

[38]  A. Fujii,et al.  Long range influence of an excess proton on the architecture of the hydrogen bond network in large-sized water clusters. , 2007, The Journal of chemical physics.

[39]  S. Xantheas,et al.  Study of NH stretching vibrations in small ammonia clusters by infrared spectroscopy in He droplets and ab initio calculations. , 2007, The journal of physical chemistry. A.

[40]  R. W. Larsen,et al.  Hydrogen-bonded OH stretching modes of methanol clusters: a combined IR and Raman isotopomer study. , 2007, The Journal of chemical physics.

[41]  Koichi Tsukiyama,et al.  Infrared photodissociation spectroscopy of protonated ammonia cluster ions, NH4+(NH3)n (n=5-8), by using infrared free electron laser. , 2006, The Journal of chemical physics.

[42]  T. Beu,et al.  Infrared spectroscopy of large ammonia clusters as a function of size. , 2006, The Journal of chemical physics.

[43]  E. Bernstein,et al.  IR+vacuum ultraviolet (118 nm) nonresonant ionization spectroscopy of methanol monomers and clusters: neutral cluster distribution and size-specific detection of the OH stretch vibrations. , 2006, The Journal of chemical physics.

[44]  M. Earle,et al.  Frequency dependent complex refractive indices of supercooled liquid water and ice determined from aerosol extinction spectra. , 2005, The journal of physical chemistry. A.

[45]  M. Klein,et al.  Protonated clathrate cages enclosing neutral water molecules: (H+)(H2O)21 and (H+)(H2O)28. , 2005, The Journal of chemical physics.

[46]  E. Meijer,et al.  Density-functional theory-based molecular simulation study of liquid methanol. , 2004, The Journal of chemical physics.

[47]  J. Sloan,et al.  Local order and dynamics in supercooled water: a study by IR spectroscopy and molecular dynamic simulations. , 2004, The Journal of chemical physics.

[48]  U. Buck,et al.  Infrared predissociation spectroscopy of large water clusters: A unique probe of cluster surfaces , 2004 .

[49]  U. Buck,et al.  Solid water clusters in the size range of tens–thousands of H2O: a combined computational/spectroscopic outlook , 2004 .

[50]  R. Signorell,et al.  Vibrational delocalization in ammonia aerosol particles. , 2004, The Journal of chemical physics.

[51]  K. Jordan,et al.  Infrared Signature of Structures Associated with the H+(H2O)n (n = 6 to 27) Clusters , 2004, Science.

[52]  Asuka Fujii,et al.  Infrared Spectroscopic Evidence for Protonated Water Clusters Forming Nanoscale Cages , 2004, Science.

[53]  C. Pursell,et al.  Infrared spectroscopy of the solid phases of ammonia. , 2004, The Journal of chemical physics.

[54]  Gianni Cardini,et al.  Hydrogen bond dynamics in liquid methanol , 2003 .

[55]  U. Buck,et al.  Vibrational spectroscopy of large water clusters of known size , 2003 .

[56]  Joseph A Morrone,et al.  Ab initio molecular dynamics study of proton mobility in liquid methanol , 2002 .

[57]  Ralf Ludwig,et al.  Water: From Clusters to the Bulk. , 2001, Angewandte Chemie.

[58]  T. Beu,et al.  Vibrational spectra of ammonia clusters from n=3 to 18 , 2001 .

[59]  T. Beu,et al.  Structure of ammonia clusters from n=3 to 18 , 2001 .

[60]  F. Huisken,et al.  Infrared spectroscopy of size-selected water and methanol clusters. , 2000, Chemical reviews.

[61]  V. Buch,et al.  Infrared Spectra and Structures of Large Water Clusters , 2000 .

[62]  J. B. Paul,et al.  Infrared cavity ringdown spectroscopy of methanol clusters: Single donor hydrogen bonding , 1999 .

[63]  L. Brown,et al.  Positions and Intensities in the 2? 4/? 1/? 3Vibrational System of 14NH 3Near 3 m , 1999 .

[64]  R. Wheatley,et al.  Structure and vibrational spectra of methanol clusters from a new potential model , 1998 .

[65]  L. Delzeit,et al.  Structural relaxation rates near the ice surface: Basis for separation of the surface and subsurface spectra , 1997 .

[66]  G. A. Jeffrey,et al.  An Introduction to Hydrogen Bonding , 1997 .

[67]  Timothy S. Zwier,et al.  RESONANT ION-DIP INFRARED SPECTROSCOPY OF BENZENE-(METHANOL)M CLUSTERS WITH M=1-6 , 1997 .

[68]  John E. Bertie,et al.  Infrared Intensities of Liquids XX: The Intensity of the OH Stretching Band of Liquid Water Revisited, and the Best Current Values of the Optical Constants of H2O(l) at 25°C between 15,000 and 1 cm−1 , 1996 .

[69]  T. Ebata,et al.  Size‐selected vibrational spectra of phenol‐(H2O)n (n=1–4) clusters observed by IR–UV double resonance and stimulated Raman‐UV double resonance spectroscopies , 1996 .

[70]  T. Kondow,et al.  Infrared Spectroscopy of NH4+(NH3)n-1 (n = 6−9): Shell Structures and Collective ν2 Vibrations , 1996 .

[71]  T. Zwier,et al.  Size-Specific Infrared Spectra of Benzene-(H2O)n Clusters (n = 1 through 7): Evidence for Noncyclic (H2O)n Structures , 1994, Science.

[72]  B. Rowland,et al.  Probing icy surfaces with the dangling‐OH‐mode absorption: Large ice clusters and microporous amorphous ice , 1991 .

[73]  J. M. Price,et al.  Vibrational spectroscopy of the ammoniated ammonium ions NH4+(NH3)n (n=1-10) , 1991 .

[74]  K. Gubbins,et al.  Hydrogen bonding in liquid methanol , 1990 .

[75]  J. Price,et al.  Observation of internal rotation in the NH+4(NH3)4 ionic cluster , 1989 .

[76]  Y. Shen,et al.  Infrared–ultraviolet double resonance studies of benzene molecules in a supersonic beam , 1988 .

[77]  Y. Lee,et al.  INFRARED VIBRATIONAL PREDISSOCIATION SPECTRA OF LARGE WATER CLUSTERS , 1987 .

[78]  D. Coker,et al.  The infrared predissociation spectra of water clusters , 1985 .

[79]  J. Farges,et al.  Structure of solid water clusters formed in a free jet expansion , 1983 .

[80]  U. Fink,et al.  Absorption coefficients of solid NH 3 from 50 to 7000 cm −1 , 1980 .

[81]  S. Kimel,et al.  Infrared spectrum of liquid and crystalline ammonia , 1977 .

[82]  A. Anderson,et al.  Raman spectra of molecular crystals. Ammonia and 3-deutero-ammonia , 1972 .

[83]  H. Wolff,et al.  Infrared Spectra and Vapor Pressure Isotope Effect of Crystallized Ammonia and Its Deuterium Derivatives , 1971 .

[84]  Michael Falk,et al.  Infrared Spectra of Methanol and Deuterated Methanols in Gas, Liquid, and Solid Phases , 1961 .

[85]  D. H. Templeton,et al.  X-ray study of solid ammonia , 1959 .

[86]  D. Hornig,et al.  The Vibrational Spectra of Molecules and Complex Ions in Crystals. V. Ammonia and Deutero‐Ammonia , 1951 .