Annular liquid crystal spatial light modulator for beam shaping and extended depth of focus

[1]  Liwei Li,et al.  Physical limitations and fundamental factors affecting performance of liquid crystal tunable lenses with concentric electrode rings. , 2013, Applied optics.

[2]  Chinhua Wang,et al.  Tunable-focus liquid crystal Fresnel zone lens based on harmonic diffraction , 2012 .

[3]  Xutao Mo Optimized annular phase masks to extend depth of field. , 2012, Optics letters.

[4]  K. Neyts,et al.  Liquid-crystal photonic applications , 2011 .

[5]  Shin-Tson Wu,et al.  A large Kerr constant polymer-stabilized blue phase liquid crystal , 2011 .

[6]  Ibrahim Abdulhalim,et al.  Approximate analytic solutions for the director profile of homogeneously aligned nematic liquid crystals , 2010 .

[7]  M. R. Dodge,et al.  Tunable-focus flat liquid-crystal diffractive lens. , 2010, Optics letters.

[8]  E. Ben-Eliezer,et al.  An optimal binary amplitude-phase mask for hybrid imaging systems that exhibit high resolution and extended depth of field. , 2008, Optics express.

[9]  M. Fromager,et al.  Laser Beam Shaping , 2008 .

[10]  V. Chigrinov,et al.  Electrically controlled birefringence colours in deformed helix ferroelectric liquid crystals , 2008 .

[11]  Yaron Silberberg,et al.  Phase and amplitude pulse shaping with two-dimensional phase-only spatial light modulators , 2007 .

[12]  M R Taghizadeh,et al.  Diffractive optical elements for beam shaping of monochromatic spatially incoherent light. , 2006, Applied optics.

[13]  Shin-Tson Wu,et al.  Adaptive liquid crystal lens with large focal length tunability. , 2006, Optics express.

[14]  I. Abdulhalim Dispersion relations for liquid crystals using the anisotropic Lorentz model with geometrical effects , 2006 .

[15]  Guoqiang Li,et al.  Switchable electro-optic diffractive lens with high efficiency for ophthalmic applications. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[16]  Zeev Zalevsky,et al.  Radial mask for imaging systems that exhibit high resolution and extended depths of field. , 2006, Applied optics.

[17]  Susumu Sato,et al.  Liquid-crystal lens with a focal length that is variable in a wide range. , 2004, Applied optics.

[18]  Susumu Sato,et al.  Lens of electrically controllable focal length made by a glass lens and liquid-crystal layers. , 2004, Applied optics.

[19]  A. Miniewicz,et al.  Liquid crystals for photonic applications , 2003 .

[20]  K. Ouchi,et al.  Imaging Properties of Double-Layered Liquid Crystal Microlens , 2002 .

[21]  S. Lagerwall,et al.  Solution of the dark state problem in antiferroelectric liquid crystal displays , 2000 .

[22]  S Takahashi,et al.  Liquid-crystal microlens with a beam-steering function. , 1997, Applied optics.

[23]  Joseph W. Goodman,et al.  Introduction to Fourier Optics; Second Edition , 1996 .

[24]  Uzi Efron,et al.  Spatial Light Modulator Technology: Materials, Devices and Applications , 1994 .

[25]  Continuous phase-only or amplitude light modulation using ferroelectric liquid crystals with fixed boundary orientations , 1994 .

[26]  I. Abdulhalim,et al.  Switching behaviour and electro-optic response due to the soft mode ferroelectric effect in chiral smectic A liquid crystals , 1991 .

[27]  Vladimir G. Chigrinov,et al.  Deformed helix ferroelectric liquid crystal display: A new electrooptic mode in ferroelectric chiral smectic C liquid crystals , 1989 .

[28]  J. Goodman Introduction to Fourier optics , 1969 .