Linear Time-Invariant Anytime Codes for Control Over Noisy Channels
暂无分享,去创建一个
[1] Jean C. Walrand,et al. Optimal causal coding - decoding problems , 1983, IEEE Trans. Inf. Theory.
[2] Shlomo Shamai,et al. Performance Analysis of Linear Codes under Maximum-Likelihood Decoding: A Tutorial , 2006, Found. Trends Commun. Inf. Theory.
[3] Ravi Teja Sukhavasi. Distributed Control and Computing: Optimal Estimation, Error-Correcting Codes, and Interactive Protocols , 2012 .
[4] Alexey S. Matveev,et al. Estimation and Control over Communication Networks (Control Engineering) , 2007 .
[5] R. Gallager. Information Theory and Reliable Communication , 1968 .
[6] Stephen P. Boyd,et al. Future directions in control in an information-rich world , 2003 .
[7] Demosthenis Teneketzis,et al. On the Structure of Optimal Real-Time Encoders and Decoders in Noisy Communication , 2006, IEEE Transactions on Information Theory.
[8] Amit Sahai,et al. Efficient Coding for Interactive Communication , 2014, IEEE Transactions on Information Theory.
[9] Gene F. Franklin,et al. Feedback Control of Dynamic Systems , 1986 .
[10] Leonard J. Schulman. Coding for interactive communication , 1996, IEEE Trans. Inf. Theory.
[11] Babak Hassibi,et al. Linear error correcting codes with anytime reliability , 2011, 2011 IEEE International Symposium on Information Theory Proceedings.
[12] Sandro Zampieri,et al. Anytime reliable transmission of real-valued information through digital noisy channels , 2008, Allerton 2008.
[13] F. Schweppe. Recursive state estimation: Unknown but bounded errors and system inputs , 1967 .
[14] Munther A. Dahleh,et al. Feedback stabilization of uncertain systems in the presence of a direct link , 2006, IEEE Transactions on Automatic Control.
[15] Anant Sahai,et al. A Simple Encoding And Decoding Strategy For Stabilization Over Discrete Memoryless Channels , 2005 .
[16] Anant Sahai,et al. The Necessity and Sufficiency of Anytime Capacity for Stabilization of a Linear System Over a Noisy Communication Link—Part I: Scalar Systems , 2006, IEEE Transactions on Information Theory.
[17] Mark Braverman,et al. Toward Coding for Maximum Errors in Interactive Communication , 2011, IEEE Transactions on Information Theory.
[18] Anant Sahai. Why Do Block Length and Delay Behave Differently if Feedback Is Present? , 2008, IEEE Transactions on Information Theory.
[19] Serdar Yüksel,et al. On Optimal Causal Coding of Partially Observed Markov Sources in Single and Multiterminal Settings , 2010, IEEE Transactions on Information Theory.
[20] Rafail Ostrovsky,et al. Error-correcting codes for automatic control , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[21] Thomas Kailath,et al. Linear Systems , 1980 .
[22] Tamer Basar,et al. Control Over Noisy Forward and Reverse Channels , 2011, IEEE Transactions on Automatic Control.
[23] Pedram Pad,et al. Capacity Achieving Random Sparse Linear Codes , 2011, ArXiv.
[24] Robin J. Evans,et al. Stabilizability of Stochastic Linear Systems with Finite Feedback Data Rates , 2004, SIAM J. Control. Optim..
[25] Pravin Varaiya,et al. Scalar estimation and control with noisy binary observations , 2004, IEEE Transactions on Automatic Control.
[26] S. Yuksel. A random time stochastic drift result and application to stochastic stabilization over noisy channels , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).
[27] Richard H. Middleton,et al. Feedback stabilization over signal-to-noise ratio constrained channels , 2007, Proceedings of the 2004 American Control Conference.
[28] Massimo Franceschetti,et al. Data Rate Theorem for Stabilization Over Time-Varying Feedback Channels , 2009, IEEE Transactions on Automatic Control.
[29] A. Sluis. Upperbounds for roots of polynomials , 1970 .
[30] Andrey V. Savkin,et al. An Analogue of Shannon Information Theory for Detection and Stabilization via Noisy Discrete Communication Channels , 2007, SIAM J. Control. Optim..
[31] Sang Joon Kim,et al. A Mathematical Theory of Communication , 2006 .
[32] Alexander Barg,et al. Random codes: Minimum distances and error exponents , 2002, IEEE Trans. Inf. Theory.