Minimal lambda-theories by ultraproducts

A longstanding open problem in lambda calculus is whether there exist continuous models of the untyped lambda calculus whose theory is exactly the least lambda-theory lb or the least sensible lambda-theory H (generated by equating all the unsolvable terms). A related question is whether, given a class of lambda models, there is a minimal lambda-theory represented by it. In this paper, we give a general tool to answer positively to this question and we apply it to a wide class of webbed models: the i-models. The method then applies also to graph models, Krivine models, coherent models and filter models. In particular, we build an i-model whose theory is the set of equations satisfied in all i-models.

[1]  Mariangiola Dezani-Ciancaglini,et al.  An extension of the basic functionality theory for the λ-calculus , 1980, Notre Dame J. Formal Log..

[2]  Glynn Winskel,et al.  Using Information Systems to Solve Recursive Domain Equations , 1991, Inf. Comput..

[3]  Mariangiola Dezani-Ciancaglini,et al.  Filter Models and Easy Terms , 2001, ICTCS.

[4]  J. Baeten,et al.  Omega can be anything it should not be , 1979 .

[5]  Antonio Bucciarelli,et al.  Graph lambda theories , 2008, Math. Struct. Comput. Sci..

[6]  Simona Ronchi Della Rocca,et al.  Logical Semantics for Stability , 2009, MFPS.

[7]  Simona Ronchi Della Rocca,et al.  Structures for lazy semantics , 1998, PROCOMET.

[8]  Gordon D. Plotkin,et al.  Set-Theoretical and Other Elementary Models of the lambda-Calculus , 1993, Theor. Comput. Sci..

[9]  Chantal Berline,et al.  From computation to foundations via functions and application: The -calculus and its webbed models , 2000, Theor. Comput. Sci..

[10]  Henk Barendregt,et al.  The Lambda Calculus: Its Syntax and Semantics , 1985 .

[11]  Dana S. Scott,et al.  Lambda Calculus: Some Models, Some Philosophy , 1980 .

[12]  Antonio Bucciarelli,et al.  Sequentiality and strong stability , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[13]  Erwin Emgeler Algebras and combinators , 1979 .

[14]  E. Engeler Algebras and combinators , 1981 .

[15]  Giuseppe Longo,et al.  Set-theoretical models of λ-calculus: theories, expansions, isomorphisms , 1983, Ann. Pure Appl. Log..

[16]  Albert R. Meyer,et al.  What is a Model of the Lambda Calculus? , 1982, Inf. Control..

[17]  M. Dezani-Ciancaglini,et al.  Extended Type Structures and Filter Lambda Models , 1984 .

[18]  Antonio Bucciarelli,et al.  The Minimal Graph Model of Lambda Calculus , 2003, MFCS.

[19]  Gérard Berry,et al.  Stable Models of Typed lambda-Calculi , 1978, ICALP.

[20]  Alberto Carraro,et al.  Easy lambda-terms are not always simple , 2012, RAIRO Theor. Informatics Appl..

[21]  Dana S. Scott,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[22]  Alberto Carraro,et al.  Reflexive Scott Domains are Not Complete for the Extensional Lambda Calculus , 2009, 2009 24th Annual IEEE Symposium on Logic In Computer Science.

[23]  Dana S. Scott,et al.  Data Types as Lattices , 1976, SIAM J. Comput..

[24]  Mariangiola Dezani-Ciancaglini,et al.  A filter lambda model and the completeness of type assignment , 1983, Journal of Symbolic Logic.

[25]  Christiaan Peter Jozef Koymans,et al.  Models of the Lambda Calculus , 1982, Inf. Control..

[26]  Furio Honsell,et al.  Uncountable Limits and the lambda Calculus , 1995, Nord. J. Comput..