Rapid design of discrete orthonormal wavelet transforms using silicon IP components

A rapid design methodology for orthonormal wavelet transform cores has been developed. This methodology is based on a generic, scaleable architecture utilising time-interleaved coefficients for the wavelet transform filters. The architecture has been captured in VHDL and parameterised in terms of wavelet family, wavelet type, data word length and coefficient word length. The control circuit is embedded within the cores and allows them to be cascaded without any interface glue logic for any desired level of decomposition. Case studies for stand alone and cascaded silicon cores for single and multi-stage wavelet analysis respectively are reported. The design time to produce silicon layout of a wavelet based system has been reduced to typically less than a day. The cores are comparable in area and performance to hand-crafted designs. The designs are portable across a range of foundries and are also applicable to FPGA and PLD implementations.