Hybrid High- and Low-Thrust Optimal Path Planning for Satellite Formation Flying

In this paper, an optimal path planning strategy for satellite formation flying subject to the central gravity field is proposed using both high- and low-thrust based on a hybrid system approach. The hybrid optimal path planning problem is defined to find reconfiguration or rendezvous trajectories using both propulsion systems which minimize the fuel usage necessary for the maneuvers. This problem is formulated as a hybrid optimal control problem where optimal switching times between two propulsion systems and optimal control history for each system should be determined. The problem is then converted into a multi-phase optimization problem and solved by using a nonlinear optimization software named GPOPS. Numerical simulation results show that the proposed approach is more effective in terms of fuel usage than conventional high-thrust two-impulse maneuvers.

[1]  Anil V. Rao,et al.  Optimal Reconfiguration of Spacecraft Formations Using the Gauss Pseudospectral Method , 2008 .

[2]  C. J. Vahlberg Mixed propulsion mode orbital transfers , 1970 .

[3]  M. Handelsman,et al.  Primer Vector on Fixed-Time Impulsive Trajectories , 1967 .

[4]  F. Bernelli-Zazzera,et al.  Optimization of Low-Thrust Reconfiguration Maneuvers for Spacecraft Flying in Formation , 2009 .

[5]  Anil V. Rao,et al.  Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method , 2010, TOMS.

[6]  M. Kim,et al.  Continuous Low-Thrust Trajectory Optimization: Techniques and Applications , 2005 .

[7]  John E. Prussing,et al.  Optimal multiple-impulse time-fixed rendezvous between circular orbits , 1984 .

[8]  Stephen D. Heister,et al.  Design of a Hybrid Chemical/Electric Propulsion Orbital Transfer Vehicle , 2002 .

[9]  Jonathan P. How,et al.  The Basics of Analytical Mechanics, Optimization, Control and Estimation , 2010 .

[10]  Jonathan P. How,et al.  Spacecraft Formation Flying: Dynamics, Control and Navigation , 2009 .

[11]  Sang-Young Park,et al.  Hybrid optimization for multiple-impulse reconfiguration trajectories of satellite formation flying , 2009 .

[12]  Sangjin Lee,et al.  Approximate Analytical Solutions to Optimal Reconfiguration Problems in Perturbed Satellite Relative Motion , 2011 .

[13]  Danwei W. Wang,et al.  Nonlinear Optimization of Low-Thrust Trajectory for Satellite Formation: Legendre Pseudospectral Approach , 2009 .

[14]  Daniel J. Scheeres,et al.  Solving Optimal Continuous Thrust Rendezvous Problems with Generating Functions , 2005 .

[15]  J. Junkins,et al.  Spacecraft Formation Flying , 2003 .

[16]  John E. Prussing,et al.  OPTIMAL IMPULSIVE INTERCEPT WITH LOW-THRUST RENDEZVOUS RETURN , 1993 .

[17]  Phil Palmer,et al.  Optimal Relocation of Satellites Flying in Near-Circular-Orbit Formations , 2006 .

[18]  D. D. Mueller,et al.  Fundamentals of Astrodynamics , 1971 .

[19]  John E. Prussing,et al.  Optimal Multiple-Impulse Satellite Evasive Maneuvers , 1994 .

[20]  Martin Buss,et al.  Towards Hybrid Optimal Control , 2000 .

[21]  Derek F Lawden,et al.  Optimal trajectories for space navigation , 1964 .

[22]  Y. Lei,et al.  Optimal Multi-Objective Linearized Impulsive Rendezvous , 2007 .

[23]  Thomas Carter,et al.  Optimal power-limited rendezvous for linearized equations of motion , 1994 .

[24]  Sang-Young Park,et al.  Analytic Solution for Fuel-Optimal Reconfiguration in Relative Motion , 2009 .

[25]  Riccardo Bevilacqua,et al.  Fuel-Optimal Spacecraft Rendezvous with Hybrid On-Off Continuous and Impulsive Thrust , 2007 .