G-fibres in storage roots of Trifolium pratense (Fabaceae): tensile stress generators for contraction.
暂无分享,去创建一个
[1] G. Burns. Eccentric Growth and the Formation of Redwood in the Main Stem of Conifers , 2012 .
[2] A. Bowling,et al. Gelatinous fibers are widespread in coiling tendrils and twining vines. , 2009, American journal of botany.
[3] George Jeronimidis,et al. Stress generation in the tension wood of poplar is based on the lateral swelling power of the G-layer. , 2008, The Plant journal : for cell and molecular biology.
[4] J. Fisher. Anatomy of axis contraction in seedlings from a fire prone habitat. , 2008, American journal of botany.
[5] A. Bowling,et al. Immunocytochemical characterization of tension wood: Gelatinous fibers contain more than just cellulose. , 2008, American journal of botany.
[6] N. Gierlinger,et al. Topochemical investigation on tension wood fibres of Acer spp., Fagus sylvatica L. and Quercus robur L. , 2008 .
[7] R. Funada,et al. Gibberellin-induced formation of tension wood in angiosperm trees , 2008, Planta.
[8] L. Davin,et al. Reaction tissue formation and stem tensile modulus properties in wild-type and p-coumarate-3-hydroxylase downregulated lines of alfalfa, Medicago sativa (Fabaceae). , 2007, American journal of botany.
[9] B. Sundberg,et al. Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar--a glimpse into the mechanism of the balancing act of trees. , 2007, Plant & cell physiology.
[10] F. Yamamoto,et al. An Overview of the Biology of Reaction Wood Formation , 2007 .
[11] K. Vaughn,et al. A cortical band of gelatinous fibers causes the coiling of redvine tendrils: a model based upon cytochemical and immunocytochemical studies , 2006, Planta.
[12] M. Burghammer,et al. Direct investigation of the structural properties of tension wood cellulose microfibrils using microbeam X-ray fibre diffraction , 2006 .
[13] N. Pütz. Seedling establishment, underground kinetics, and clonal reiteration: How do Potentilla inclinata and Inula ensifolia get their multifunctional subterranean systems? , 2006 .
[14] Notburga Gierlinger,et al. Chemical Imaging of Poplar Wood Cell Walls by Confocal Raman Microscopy , 2006, Plant Physiology.
[15] Hiroyuki Yamamoto. Role of the gelatinous layer on the origin of the physical properties of the tension wood , 2004, Journal of Wood Science.
[16] B. Sundberg,et al. Patterns of Auxin Distribution during Gravitational Induction of Reaction Wood in Poplar and Pine1 , 2004, Plant Physiology.
[17] K. Ruel,et al. Detection in situ and characterization of lignin in the G-layer of tension wood fibres of Populus deltoides , 2004, Planta.
[18] Tapani Vuorinen,et al. Ultra Violet Resonance Raman Spectroscopy in Lignin Analysis: Determination of Characteristic Vibrations of p-Hydroxyphenyl, Guaiacyl, and Syringyl Lignin Structures , 2003, Applied spectroscopy.
[19] M. Kwon,et al. Induced compression wood formation in Douglas fir (Pseudotsuga menziesii) in microgravity. , 2001, Phytochemistry.
[20] H. Edwards,et al. FT Raman microscopy of untreated natural plant fibres. , 1997, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
[21] S. Ralph,et al. FT-Raman Spectroscopy of Wood: Identifying Contributions of Lignin and Carbohydrate Polymers in the Spectrum of Black Spruce (Picea Mariana) , 1997 .
[22] N. Pütz. Underground plant movement III. The corm of Sauromatum guttatum (Wall.) Schott (Araceae) , 1996 .
[23] N. Pütz. Underground Plant Movement , 1993 .
[24] J. Jernstedt,et al. Root contraction in hyacinth IV. Orientation of cellulose microfibrils in radial longitudinal and transverse cell walls , 1990, Protoplasma.
[25] J. Jernstedt. ROOT CONTRACTION IN HYACINTH. I. EFFECTS OF IAA ON DIFFERENTIAL CELL EXPANSION , 1984 .
[26] R. Archer,et al. Apical control of branch movements and tension wood in black cherry and white ash trees , 1983 .
[27] J. Fisher,et al. Occurrence of Reaction Wood in Branches of Dicotyledons and Its Role in Tree Architecture , 1981, Botanical Gazette.
[28] R. Archer,et al. REACTION WOOD: INDUCTION AND MECHANICAL ACTION! , 1977 .
[29] 1. A. Rimbach: Die Verbreitung der Wurzelverkürzung im Pflanzenreich , 1929, Berichte der Deutschen Botanischen Gesellschaft.
[30] 14. A. Rimbach: Die Geschwindigkeit und Dauer der Wurzelverkürzung , 1927, Berichte der Deutschen Botanischen Gesellschaft.
[31] Notburga Gierlinger,et al. The potential of Raman microscopy and Raman imaging in plant research , 2007 .
[32] M. Fournier,et al. Tension wood and opposite wood in 21 tropical rain forest species : occurence and efficiency of the G.-Layer , 2006 .
[33] N. Pütz,et al. Seedling establishment, bud movement, and subterranean diversity of geophilous systems in Apiaceae , 2002 .
[34] Hiroyuki Yamamoto,et al. Growth stresses in tension wood: role of microfibrils and lignification , 1994 .
[35] J. Boyd,et al. BASIC CAUSE OF DIFFERENTIATION OF TENSION WOOD AND COMPRESSION WOOD. , 1977 .
[36] A. Huang. Enzymatic hydrolysis of cellulose to sugar. , 1975, Biotechnology and bioengineering symposium.
[37] Huang Aa. Enzymatic hydrolysis of cellulose to sugar. , 1975 .
[38] K. Wilson,et al. Root Contraction in Hyacinthus orientalis , 1966 .
[39] H. Meier,et al. Physical and Chemical Properties of the Gelatinous Layer in Tension Wood Fibres of Aspen (Populus tremula L.) , 1966 .
[40] A. Wardrop. The Reaction Anatomy of Arborescent Angiosperms , 1964 .
[41] A. Wardrop. The nature of reaction wood. V. The distribution and formation of tension wood in some species of Eucalyptus , 1956 .
[42] E. Münch. Statik und Dynamik des schraubigen Baues der Zellwand, besonders des Druck- und Zugholzes. , 1938 .