ZnO/TiO2 core–brush nanostructure: processing, microstructure and enhanced photocatalytic activity

Heterostructure ZnO/TiO2 core–brush nanostructures were synthesized on glass substrates by a combination of aqueous solution growth and magnetron sputtering method. The microstructure and morphology were characterized using scanning electron microscopy, X-ray diffraction and transmission electron microscopy. The heterostructure core–brush shows the single crystal ZnO nanorod as the core and polycrystalline TiO2 nanowires as the brush-like outer layer. Surface electronic states and optical transmittance were measured using X-ray photoelectron spectroscopy and a UV-vis spectrometer. The growth mechanism was proposed as a slow “particle-by-particle” mechanism. The photocatalytic activity of the ZnO/TiO2 core–brush nanostructure was evaluated by the decomposition reaction of Bromo-Pyrogallol Red dye under UV (245 nm) and visible-light (450 nm) irradiation. The results revealed that the core–brush structure exhibited much higher photocatalytic activities than that of a TiO2 film and a TiO2/ZnO composite film. The photocatalytic activity enhancement of the ZnO/TiO2 core–brush could be attributed to the interaction effect, lower band gap energy and its unique core–brush feature which can lower the recombination rate of electron–hole pairs, extend the absorption range and provide a high density of active sites.

[1]  Yang Xu,et al.  Synthesis and characterization of TiO2/Fe2O3 core–shell nanocomposition film and their photoelectrochemical property , 2011 .

[2]  H. Tada,et al.  Titanium(IV) dioxide surface-modified with iron oxide as a visible light photocatalyst. , 2011, Angewandte Chemie.

[3]  B. Geng,et al.  Self-assembly fabrication of 3D porous quasi-flower-like ZnO nanostrip clusters for photodegradation of an organic dye with high performance , 2011 .

[4]  C. Zou,et al.  The Annealing Effect on the Microstructures and Phase Transformation of the TiO2 Layer in ZnO/TiO2 Core−Shell Nanostructures , 2011 .

[5]  Andrea R. Gerson,et al.  Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn , 2010 .

[6]  Mohammad. Rasul,et al.  Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments , 2010 .

[7]  Chen Shen,et al.  Orientable pore-size-distribution of ZnO nanostructures and their superior photocatalytic activity , 2010 .

[8]  Zhongming Zeng,et al.  Synthesis and photovoltaic effect of vertically aligned ZnO/ZnS core/shell nanowire arrays , 2010 .

[9]  Yingpu Bi,et al.  In situ oxidation synthesis of Ag/AgCl core-shell nanowires and their photocatalytic properties. , 2009, Chemical communications.

[10]  Yun Jeong Hwang,et al.  High density n-Si/n-TiO2 core/shell nanowire arrays with enhanced photoactivity. , 2009, Nano letters.

[11]  Guohua Chen,et al.  Photoelectrocatalytic materials for environmental applications , 2009 .

[12]  C. Zou,et al.  Preparation and enhanced photoluminescence property of ordered ZnO/TiO2 bottlebrush nanostructures , 2009 .

[13]  Jimmy C. Yu,et al.  Thermally stable ordered mesoporous CeO2/TiO2 visible-light photocatalysts. , 2009, Physical chemistry chemical physics : PCCP.

[14]  T. Xie,et al.  Low-Temperature Synthesis and High Visible-Light-Induced Photocatalytic Activity of BiOI/TiO2 Heterostructures , 2009 .

[15]  Wilson A. Smith,et al.  Superior photocatalytic performance by vertically aligned core–shell TiO2/WO3 nanorod arrays , 2009 .

[16]  Zhong Lin Wang,et al.  Synthesis, characterization, and photocatalytic properties of ZnO/(La,Sr)CoO3 composite nanorod arrays , 2009 .

[17]  Md. Faruk Hossain,et al.  Influence of direct current power on the photocatalytic activity of facing target sputtered TiO2 thin films , 2008 .

[18]  M. Welland,et al.  A simple low temperature synthesis route for ZnO–MgO core–shell nanowires , 2008, Nanotechnology.

[19]  Wei Gao,et al.  Template Growth of ZnO Nanorods and Microrods with Controllable Densities , 2008 .

[20]  J. Musil,et al.  Nanostructure of photocatalytic TiO2 films sputtered at temperatures below 200 °C , 2008 .

[21]  W. Cai,et al.  ZnO Hierarchical Micro/Nanoarchitectures: Solvothermal Synthesis and Structurally Enhanced Photocatalytic Performance , 2008 .

[22]  B. Liao,et al.  Preparation of nanosized TiO2/ZnO composite catalyst and its photocatalytic activity for degradation of methyl orange , 2008 .

[23]  Peidong Yang,et al.  ZnO-TiO2 Core-Shell Nanorod/P3HT Solar Cells , 2007 .

[24]  G. Marin,et al.  Photocatalytic activity of dc magnetron sputter deposited amorphous TiO2 thin films , 2007 .

[25]  Ying Yu,et al.  In situ Fenton reagent generated from TiO2/Cu2O composite film: a new way to utilize TiO2 under visible light irradiation. , 2007, Environmental science & technology.

[26]  A. Fujishima,et al.  Study of photocatalytic activity of TiO2 thin films prepared in various Ar∕O2 ratio and sputtering gas pressure , 2007 .

[27]  L. Vayssieres An aqueous solution approach to advanced metal oxide arrays on substrates , 2007 .

[28]  B. Sels,et al.  Magnetron sputter deposition for catalyst synthesis , 2007 .

[29]  G. Hungerford,et al.  Reactive sputtering deposition of photocatalytic TiO2 thin films on glass substrates , 2007 .

[30]  Nick Serpone,et al.  Is the band gap of pristine TiO(2) narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? , 2006, The journal of physical chemistry. B.

[31]  Aleksandra Radenovic,et al.  ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. , 2006, The journal of physical chemistry. B.

[32]  H. A. Amar,et al.  Photocatalytic oxidation of methyl orange in presence of titanium dioxide in aqueous suspension. Part II: kinetics study , 2005 .

[33]  M. L. Curri,et al.  UV-induced photocatalytic degradation of azo dyes by organic-capped ZnO nanocrystals immobilized onto substrates , 2005 .

[34]  Peidong Yang,et al.  General route to vertical ZnO nanowire arrays using textured ZnO seeds. , 2005, Nano letters.

[35]  Peidong Yang,et al.  Nanowire dye-sensitized solar cells , 2005, Nature materials.

[36]  J. Musil,et al.  Reactive magnetron sputtering of thin films: present status and trends , 2005 .

[37]  H. Gong,et al.  A study of conduction in the transition zone between homologous and ZnO-rich regions in the In2O3–ZnO system , 2005 .

[38]  Xiaomin Li,et al.  Flowerlike ZnO nanostructures via hexamethylenetetramine-assisted thermolysis of zinc-ethylenediamine complex. , 2005, The journal of physical chemistry. B.

[39]  P. O’Brien,et al.  Understanding the factors that govern the deposition and morphology of thin films of ZnO from aqueous solution , 2004 .

[40]  B. Liu,et al.  Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[41]  Jimmy C. Yu,et al.  Pore-Wall Chemistry and Photocatalytic Activity of Mesoporous Titania Molecular Sieve Films , 2004 .

[42]  Q. Xie,et al.  Preparation, characterization and photoelectrocatalytic properties of nanocrystalline Fe2O3/TiO2, ZnO/TiO2, and Fe2O3/ZnO/TiO2 composite film electrodes towards pentachlorophenol degradation , 2004 .

[43]  Huifang Xu,et al.  Complex and oriented ZnO nanostructures , 2003, Nature materials.

[44]  P. Cozzoli,et al.  Low-temperature synthesis of soluble and processable organic-capped anatase TiO2 nanorods. , 2003, Journal of the American Chemical Society.

[45]  M. J. Herrera-Cabrera,et al.  Optical properties and electronic structure of rock-salt ZnO under pressure , 2003 .

[46]  L. Miao,et al.  Optical properties of polycrystalline and epitaxial anatase and rutile TiO2 thin films by rf magnetron sputtering , 2003 .

[47]  L. Vayssieres Growth of Arrayed Nanorods and Nanowires of ZnO from Aqueous Solutions , 2003 .

[48]  R. Van Grieken,et al.  Synthesis of size-controlled silica-supported TiO2 photocatalysts , 2002 .

[49]  Heechul Choi,et al.  Solar/UV-induced photocatalytic degradation of three commercial textile dyes. , 2002, Journal of hazardous materials.

[50]  R. Asahi,et al.  Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides , 2001, Science.

[51]  A. Hagfeldt,et al.  Purpose-Built Anisotropic Metal Oxide Material: 3D Highly Oriented Microrod Array of ZnO , 2001 .

[52]  Akira Fujishima,et al.  Titanium dioxide photocatalysis , 2000 .

[53]  Liu Yang,et al.  Structural and optical properties of TiO 2 thin film and TiO 2 +2 wt.% ZnFe 2 O 4 composite film prepared by r.f. sputtering , 2000 .

[54]  I. Safi,et al.  Recent aspects concerning DC reactive magnetron sputtering of thin films: a review , 2000 .

[55]  M. Casarin,et al.  Photoemission and STM study of the electronic structure of Nb-doped TiO2 , 2000 .

[56]  Yong Xu,et al.  The absolute energy positions of conduction and valence bands of selected semiconducting minerals , 2000 .

[57]  Yasuo Hayashi,et al.  High rate sputter deposition of TiO2 from TiO2−x target , 1999 .

[58]  I. Poulios,et al.  Photodegradation of the textile dye Reactive Black 5 in the presence of semiconducting oxides , 1999 .

[59]  Jackie Y. Ying,et al.  Role of Particle Size in Nanocrystalline TiO2-Based Photocatalysts , 1998 .

[60]  A. Meijerink,et al.  Size-Selective Photoetching of Nanocrystalline Semiconductor Particles , 1998 .

[61]  R. Kershaw,et al.  Concerning the role of oxygen in photocatalytic decomposition of salicylic acid in water , 1996 .

[62]  T. B. Ghosh,et al.  XPS and X-ray diffraction studies of aluminum-doped zinc oxide transparent conducting films , 1996 .

[63]  A. Gonzalez-Elipe,et al.  Spectroscopic characterization of quantum-sized TiO2 supported on silica: influence of size and TiO2-SiO2 interface composition , 1995 .

[64]  K. Domen,et al.  Photocatalysis over binary metal oxides. Enhancement of the photocatalytic activity of titanium dioxide in titanium-silicon oxides , 1986 .

[65]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[66]  Y. Chen,et al.  Growth and characterization of type-II ZnO/ZnTe core-shell nanowire arrays for solar cell applications , 2010 .

[67]  Da Chen,et al.  Preparation and Enhanced Photoelectrochemical Performance of Coupled Bicomponent ZnO−TiO2 Nanocomposites , 2008 .

[68]  Christof Wöll,et al.  The chemistry and physics of zinc oxide surfaces , 2007 .

[69]  James L. Gole,et al.  Defect‐Related Optical Behavior in Surface Modified TiO2 Nanostructures , 2005 .

[70]  A. Reller,et al.  Photoinduced reactivity of titanium dioxide , 2004 .

[71]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[72]  L. Palmisano,et al.  Photocatalytic degradation of nitrophenols in aqueous titanium dioxide dispersion , 1991 .

[73]  M. Anpo,et al.  Photocatalysis on titanium-aluminum binary metal oxides: enhancement of the photocatalytic activity of titania species , 1988 .