Description of PEM Fuel Cells System

This chapter provides a description of polymer electrolyte membrane (PEM) fuel cell-based systems and different modeling approaches. First, it shows the structure of a single cell, the advantages and disadvantages of this type of fuel cell, the expressions of the generated voltage and the efficiency, and the generic structure of a generation system based on PEM fuel cell. Second, the chapter provides a review of the principal models presented in the literature to describe the behavior of the system. Different types of PEM fuel cell models are presented, focusing on dynamic models suitable for control purposes. Particularly, this chapter describes in detail the dynamic model used as a base to represent the system in the subsequent chapters of the book. Then, the described model is used to study the optimal operation of a fuel cell at different loads, showing the benefits of an optimal operation in terms of hydrogen reduction and greater peak power.

[1]  Mohammad S. Alam,et al.  A dynamic model for a stand-alone PEM fuel cell power plant for residential applications , 2004 .

[2]  T. Springer,et al.  Polymer Electrolyte Fuel Cell Model , 1991 .

[3]  Trung Van Nguyen,et al.  A Two-Dimensional, Two-Phase, Multicomponent, Transient Model for the Cathode of a Proton Exchange Membrane Fuel Cell Using Conventional Gas Distributors , 2001 .

[4]  B. Andreaus,et al.  Analysis of performance losses in polymer electrolyte fuel cells at high current densities by impedance spectroscopy , 2002 .

[5]  G. Maggio,et al.  An empirical equation for polymer electrolyte fuel cell (PEFC) behaviour , 1999 .

[6]  David P. Wilkinson,et al.  High temperature PEM fuel cells , 2006 .

[7]  Ned Djilali,et al.  Computational model of a PEM fuel cell with serpentine gas flow channels , 2004 .

[8]  M. Wöhr,et al.  Dynamic modelling and simulation of a polymer membrane fuel cell including mass transport limitation , 1998 .

[9]  E H Law,et al.  Model-based control strategies in the dynamic interaction of air supply and fuel cell , 2004 .

[10]  Woong-Chul Yang,et al.  Control Challenges and Methodologies in Fuel Cell Vehicle Development , 1998 .

[11]  Massimo Ceraolo,et al.  Modelling static and dynamic behaviour of proton exchange membrane fuel cells on the basis of electro-chemical description , 2003 .

[12]  Brant A. Peppley,et al.  A Review of Mathematical Models for Hydrogen and Direct Methanol Polymer Electrolyte Membrane Fuel Cells , 2004 .

[13]  T. Nguyen,et al.  Two-phase flow model of the cathode of PEM fuel cells using interdigitated flow fields , 2000 .

[14]  Kaushik Rajashekara,et al.  Propulsion System Strategies for Fuel Cell Vehicles , 2000 .

[15]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[16]  M. Ciureanu,et al.  PEM fuel cells as membrane reactors: kinetic analysis by impedance spectroscopy , 2003 .

[17]  D. Macdonald Reflections on the history of electrochemical impedance spectroscopy , 2006 .

[18]  Luciane Neves Canha,et al.  An electrochemical-based fuel-cell model suitable for electrical engineering automation approach , 2004, IEEE Transactions on Industrial Electronics.

[19]  R. M. Moore,et al.  Pem fuel cell system optimization , 1998 .

[20]  K. B. Wipke,et al.  ADVISOR 2.1: a user-friendly advanced powertrain simulation using a combined backward/forward approach , 1999 .

[21]  Z. H. Wang,et al.  Two-phase flow and transport in the air cathode of proton exchange membrane fuel cells , 2000 .

[22]  Joaquín Aguado,et al.  Controllability analysis of decentralised linear controllers for polymeric fuel cells , 2005 .

[23]  Maurice Fadel,et al.  ENERGY MANAGEMENT OF FUEL CELL SYSTEM AND SUPERCAPS ELEMENTS , 2005 .

[24]  S.F.J. Flipsen,et al.  "Power sources compared: the ultimate truth?" , 2006 .

[25]  Fang Wang,et al.  A degradation study of Nafion proton exchange membrane of PEM fuel cells , 2007 .

[26]  Tony Markel,et al.  ADVISOR: A SYSTEMS ANALYSIS TOOL FOR ADVANCED VEHICLE MODELING , 2002 .

[27]  Anna G. Stefanopoulou,et al.  Dynamics of low-pressure and high-pressure fuel cell air supply systems , 2003, Proceedings of the 2003 American Control Conference, 2003..

[28]  C. Chamberlin,et al.  Modeling of Proton Exchange Membrane Fuel Cell Performance with an Empirical Equation , 1995 .

[29]  Zhihua Yang,et al.  An improved dynamic voltage model of PEM fuel cell stack , 2010 .

[30]  Kwi Seong Jeong,et al.  Fuel economy and life-cycle cost analysis of a fuel cell hybrid vehicle , 2002 .

[31]  Diego Feroldi,et al.  Performance improvement of a PEMFC system controlling the cathode outlet air flow , 2007 .

[32]  Sigurd Skogestad,et al.  Control of fuel cell power output , 2007 .

[33]  Dawn Bernardi,et al.  Water‐Balance Calculations for Solid‐Polymer‐Electrolyte Fuel Cells , 1990 .

[34]  J. C. Amphlett,et al.  A model predicting transient responses of proton exchange membrane fuel cells , 1996 .

[35]  T. Fuller,et al.  Water and Thermal Management in Solid‐Polymer‐Electrolyte Fuel Cells , 1993 .

[36]  D. Friedman,et al.  Maximizing Direct-Hydrogen PEM Fuel Cell Vehicle Efficiency – Is Hybridization Necessary? , 1999 .

[37]  January,et al.  Challenges in fuel cell power plant control : The role of system level dynamic models , 2003 .

[38]  Anna G. Stefanopoulou,et al.  Modeling and control for PEM fuel cell stack system , 2002, Proceedings of the 2002 American Control Conference (IEEE Cat. No.CH37301).

[39]  Ralph E. White,et al.  A water and heat management model for proton-exchange-membrane fuel cells , 1993 .

[40]  C. Bordons,et al.  Development and experimental validation of a PEM fuel cell dynamic model , 2007 .

[41]  J. Pukrushpan Modeling and control of fuel cell systems and fuel processors , 2003 .

[42]  Frano Barbir,et al.  PEM Fuel Cells: Theory and Practice , 2012 .

[43]  L. Carrette,et al.  Fuel Cells - Fundamentals and Applications , 2001 .

[44]  Huei Peng,et al.  Model predictive control for starvation prevention in a hybrid fuel cell system , 2004, Proceedings of the 2004 American Control Conference.

[45]  E. Rideal,et al.  Fuel Cells , 1958, Nature.

[46]  Maria Serra,et al.  Characterisation of fuel cell state using Electrochemical Impedance Spectroscopy analysis , 2008 .

[47]  P. R. Pathapati,et al.  A new dynamic model for predicting transient phenomena in a PEM fuel cell system , 2005 .

[48]  Mark W. Verbrugge,et al.  A Mathematical Model of the Solid‐Polymer‐Electrolyte Fuel Cell , 1992 .

[49]  James Larminie,et al.  Fuel Cell Systems Explained , 2000 .

[50]  James Larminie,et al.  Fuel Cell Systems Explained: Larminie/Fuel Cell Systems Explained , 2003 .

[51]  Trung Van Nguyen,et al.  Three-dimensional effects of liquid water flooding in the cathode of a PEM fuel cell , 2003 .

[52]  Norman Munroe,et al.  Review and comparison of approaches to proton exchange membrane fuel cell modeling , 2005 .

[53]  M. Verbrugge,et al.  Mathematical model of a gas diffusion electrode bonded to a polymer electrolyte , 1991 .

[54]  Diego Iannuzzi,et al.  DESIGN CRITERIA OPTIMIZING THE USE OF FUEL CELL SOURCE IN ELECTRIC POWER SYSTEM , 2005 .