Micro-mechanical fatigue modelling of unidirectional glass fibre reinforced polymer composites

Abstract A multi-scale numerical fatigue modelling methodology is proposed for the characterization of axial tension–tension fatigue behaviour of unidirectional Glass Fibre Reinforced Polymer (GFRP) composites. The methodology is developed to link the dominant fibre failure mechanism to composite fatigue properties, by a three-step geometrical up-scaling process. This study aims to provide composite fatigue predictions by only using the material properties of fibres and matrix. Compared to the experimental results, the fatigue model over-predicts fatigue lives and gives reasonable estimations of axial stiffness degradation curves of the unidirectional GFRP composite dog-bone specimens.

[1]  Weixing Yao,et al.  Fatigue life prediction of composite laminates by FEA simulation method , 2010 .

[2]  Charles R. Kurkjian,et al.  The intrinsic strength and fatigue of oxide glasses , 2003 .

[3]  Kristofer Gamstedt,et al.  Fatigue damage mechanisms in polymer matrix composites , 1997 .

[4]  G. Kalinka,et al.  A technique for the measurement of reinforcement fibre tensile strength at sub-millimetre gauge lengths , 2001 .

[5]  W. Curtin,et al.  Tensile Strength of Fiber-Reinforced Composites: II. Application to Polymer Matrix Composites , 1998 .

[6]  C. V. Singh,et al.  A representative volume element based on translational symmetries for FE analysis of cracked laminates with two arrays of cracks , 2009 .

[7]  K. Goda,et al.  Reliability Approach to the Tensile Strength of Unidirectional CFRP Composites by Monte-Carlo Simulation , 1993, Reliability and Optimization of Structural Systems.

[8]  Richard M. Christensen,et al.  Tensor Transformations and Failure Criteria for the Analysis of Fiber Composite Materials , 1988 .

[9]  Bernard D. Coleman,et al.  Statistics and Time Dependence of Mechanical Breakdown in Fibers , 1958 .

[10]  Benjamin Epstein,et al.  Statistical Aspects of Fracture Problems , 1948 .

[11]  K. Trustrum,et al.  Statistical approach to brittle fracture , 1977 .

[12]  W. Curtin Tensile Strength of Fiber-Reinforced Composites: III. Beyond the Traditional Weibull Model for Fiber Strengths , 2000 .

[13]  J. C. H. Affdl,et al.  The Halpin-Tsai Equations: A Review , 1976 .

[14]  S. L. Phoenix,et al.  The Chain-of-Bundles Probability Model For the Strength of Fibrous Materials I: Analysis and Conjectures , 1978 .

[15]  Zheng-Ming Huang,et al.  Simulation of the mechanical properties of fibrous composites by the bridging micromechanics model , 2001 .

[16]  P. Brøndsted Micromechanical Modeling of Strength and Damage of Fiber Reinforced Composites , 2007 .

[17]  M.J.A. van den Oever,et al.  Continuous-glass-fibre-reinforced polypropylene composites II. Influence of maleic-anhydride modified polypropylene on fatigue behaviour , 1998 .

[18]  W. Curtin,et al.  Tensile Strength of Fiber-Reinforced Composites: I. Model and Effects of Local Fiber Geometry , 1998 .

[19]  Chung-Yuen Hui,et al.  Size effects in the distribution for strength of brittle matrix fibrous composites , 1997 .

[20]  Roberts Joffe,et al.  Effects of fibre coating (size) on properties of glass fibre/vinyl ester composites , 1999 .

[21]  Andrejs Pupurs,et al.  Modeling Mechanical Fatigue of UD Composite: Multiple Fiber Breaks and Debond Growth , 2009 .

[22]  Bernard D. Coleman,et al.  On the strength of classical fibres and fibre bundles , 1958 .

[23]  N. Takeda,et al.  Size effect on tensile strength of unidirectional CFRP composites— experiment and simulation , 2002 .

[24]  Bernard D. Coleman,et al.  Time Dependence of Mechanical Breakdown Phenomena , 1956 .

[25]  Leon Mishnaevsky,et al.  Unidirectional high fiber content composites: Automatic 3D FE model generation and damage simulation , 2009 .

[26]  Leon Mishnaevsky,et al.  Micromechanisms of damage in unidirectional fiber reinforced composites: 3D computational analysis , 2009 .

[27]  S. L. Phoenix,et al.  The Chain-of-Bundles Probability Model for the Strength of Fibrous Materials II: A Numerical Study of Convergence , 1978 .

[28]  P. Curtis,et al.  The Strength-Life Equal Rank Assumption and its application to the fatigue life prediction of composite materials , 1988 .