Biomimetic MXene Textures with Enhanced Light‐to‐Heat Conversion for Solar Steam Generation and Wearable Thermal Management

[1]  Zhongfan Liu,et al.  Hierarchical Graphene Foam for Efficient Omnidirectional Solar–Thermal Energy Conversion , 2017, Advanced materials.

[2]  Bin Zhu,et al.  Self-assembly of highly efficient, broadband plasmonic absorbers for solar steam generation , 2016, Science Advances.

[3]  Liangbing Hu,et al.  Highly Flexible and Efficient Solar Steam Generation Device , 2017, Advanced materials.

[4]  D. Stuart-Fox,et al.  Thermal consequences of colour and near-infrared reflectance , 2017, Philosophical Transactions of the Royal Society B: Biological Sciences.

[5]  Gang Chen,et al.  Steam generation under one sun enabled by a floating structure with thermal concentration , 2016, Nature Energy.

[6]  Lijie Ci,et al.  Experimental observation of an extremely dark material made by a low-density nanotube array. , 2008, Nano letters.

[7]  Chang E. Ren,et al.  Flexible and conductive MXene films and nanocomposites with high capacitance , 2014, Proceedings of the National Academy of Sciences.

[8]  Golibjon Berdiyorov,et al.  Optical properties of functionalized Ti3C2T2 (T = F, O, OH) MXene: First-principles calculations , 2016 .

[9]  Teresa J. Feo,et al.  Structural absorption by barbule microstructures of super black bird of paradise feathers , 2018, Nature Communications.

[10]  Peter Nordlander,et al.  Solar vapor generation enabled by nanoparticles. , 2013, ACS nano.

[11]  Nathan S Lewis,et al.  Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications. , 2010, Nature materials.

[12]  Y. Gogotsi,et al.  Kinetics of aluminum extraction from Ti3AlC2 in hydrofluoric acid , 2013 .

[13]  Y. Gogotsi,et al.  Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate , 2017 .

[14]  Yi Cui,et al.  Personal thermal management by metallic nanowire-coated textile. , 2015, Nano letters.

[15]  S. Ko,et al.  Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications , 2015, Advanced materials.

[16]  R. Hurt,et al.  Chemical Dissolution Pathways of MoS2 Nanosheets in Biological and Environmental Media. , 2016, Environmental science & technology.

[17]  G. Ho,et al.  Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications , 2018 .

[18]  T. Stegmaier,et al.  Bionics in textiles: flexible and translucent thermal insulations for solar thermal applications , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[19]  Young Bum Lee,et al.  Stretchable Heater Using Ligand-Exchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy. , 2015, ACS nano.

[20]  M. Lieberman,et al.  Functionalized Graphene Enables Highly Efficient Solar Thermal Steam Generation. , 2017, ACS nano.

[21]  Yury Gogotsi,et al.  Elastic properties of 2D Ti3C2Tx MXene monolayers and bilayers , 2018, Science Advances.

[22]  Yu Chen,et al.  Two-Dimensional Ultrathin MXene Ceramic Nanosheets for Photothermal Conversion. , 2017, Nano letters.

[23]  M. Chhowalla,et al.  Metallic 1T phase MoS2 nanosheets as supercapacitor electrode materials. , 2015, Nature nanotechnology.

[24]  Tao Deng,et al.  A Bioinspired, Reusable, Paper‐Based System for High‐Performance Large‐Scale Evaporation , 2015, Advanced materials.

[25]  Stanislav N. Gorb,et al.  Snake velvet black: Hierarchical micro- and nanostructure enhances dark colouration in Bitis rhinoceros , 2013, Scientific Reports.

[26]  Vladimir M. Shalaev,et al.  Highly Broadband Absorber Using Plasmonic Titanium Carbide (MXene) , 2018 .

[27]  Wenshan Cai,et al.  3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination , 2016, Nature Photonics.

[28]  Z. Suo,et al.  Nonlinear analyses of wrinkles in a film bonded to a compliant substrate , 2005 .

[29]  Wounjhang Park,et al.  Flexible thin-film black gold membranes with ultrabroadband plasmonic nanofocusing for efficient solar vapour generation , 2015, Nature Communications.

[30]  U. Levy,et al.  Direct temperature mapping of nanoscale plasmonic devices. , 2014, Nano letters.

[31]  Sajad Haq,et al.  Ultra-broadband light trapping using nanotextured decoupled graphene multilayers , 2016, Science Advances.

[32]  Jianwei Song,et al.  3D‐Printed, All‐in‐One Evaporator for High‐Efficiency Solar Steam Generation under 1 Sun Illumination , 2017, Advanced materials.

[33]  P. Chu,et al.  Biodegradable black phosphorus-based nanospheres for in vivo photothermal cancer therapy , 2016, Nature Communications.

[34]  W. Shang,et al.  Solar steam generation: Steam by thermal concentration , 2016, Nature Energy.

[35]  Peng Wang,et al.  MXene Ti3C2: An Effective 2D Light-to-Heat Conversion Material. , 2017, ACS nano.

[36]  Shining Zhu,et al.  Flexible and Salt Resistant Janus Absorbers by Electrospinning for Stable and Efficient Solar Desalination , 2018 .

[37]  James Loomis,et al.  Solar steam generation by heat localization , 2014, Nature Communications.

[38]  G. Ozin,et al.  Synthesis of Black TiOx Nanoparticles by Mg Reduction of TiO2 Nanocrystals and their Application for Solar Water Evaporation , 2017 .

[39]  Shining Zhu,et al.  Mushrooms as Efficient Solar Steam‐Generation Devices , 2017, Advanced materials.

[40]  Zhe Yin,et al.  Weft‐Knitted Fabric for a Highly Stretchable and Low‐Voltage Wearable Heater , 2017 .

[41]  Di Zhang,et al.  Bioinspired Engineering of Thermal Materials , 2015, Advanced materials.

[42]  G. Stevens,et al.  Adhesion enhancement of polymer surfaces by atmospheric plasma treatment , 2001 .

[43]  Hongzhi Wang,et al.  Origami-inspired active graphene-based paper for programmable instant self-folding walking devices , 2015, Science Advances.

[44]  Haitao Yang,et al.  Controlled Crumpling of Two-Dimensional Titanium Carbide (MXene) for Highly Stretchable, Bendable, Efficient Supercapacitors. , 2018, ACS nano.

[45]  Peter Nordlander,et al.  Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles , 2013, Proceedings of the National Academy of Sciences.

[46]  Xiaofei Ma,et al.  Reusable reduced graphene oxide based double-layer system modified by polyethylenimine for solar steam generation , 2017 .

[47]  Yury Gogotsi,et al.  Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide (Ti3C2Tx MXene) , 2017 .

[48]  Shining Zhu,et al.  Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path , 2016, Proceedings of the National Academy of Sciences.

[49]  S. C. Kaushik,et al.  Exergy analysis and investigation for various feed water heaters of direct steam generation solar–thermal power plant , 2010 .

[50]  Hanxue Sun,et al.  Superwetting Monolithic Hollow‐Carbon‐Nanotubes Aerogels with Hierarchically Nanoporous Structure for Efficient Solar Steam Generation , 2018, Advanced Energy Materials.

[51]  Xiaodong Chen,et al.  High‐Performance Photothermal Conversion of Narrow‐Bandgap Ti2O3 Nanoparticles , 2017, Advanced materials.

[52]  Chongyin Yang,et al.  Effective nonmetal incorporation in black titania with enhanced solar energy utilization , 2014 .

[53]  Takeshi Fujita,et al.  Multifunctional Porous Graphene for High‐Efficiency Steam Generation by Heat Localization , 2015, Advanced materials.

[54]  E. Widder,et al.  Bioluminescence in the Ocean: Origins of Biological, Chemical, and Ecological Diversity , 2010, Science.

[55]  W. Luo,et al.  Plasmonic Wood for High‐Efficiency Solar Steam Generation , 2018 .

[56]  Xiaozhen Hu,et al.  Tailoring Graphene Oxide‐Based Aerogels for Efficient Solar Steam Generation under One Sun , 2017, Advanced materials.

[57]  D. Carroll,et al.  Metallic 1T phase MoS2 nanosheets for high-performance thermoelectric energy harvesting , 2016 .

[58]  Wenhan Huang,et al.  Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds , 2016, Nature Communications.

[59]  Kerui Li,et al.  Prepolymerization-assisted fabrication of an ultrathin immobilized layer to realize a semi-embedded wrinkled AgNW network for a smart electrothermal chromatic display and actuator , 2017 .