Systems for Privacy-Preserving Mobility Data Management

The increasing availability of data due to the explosion of mobile devices and positioning technologies has led to the development of efficient management and mining techniques for mobility data. However, the analysis of such data may result in significant risks regarding individuals’ privacy. A typical approach for privacy-aware mobility data sharing aims at publishing an anonymized version of the mobility dataset, operating under the assumption that most of the information in the original dataset can be disclosed without causing any privacy violation. On the other hand, an alternative strategy considers that data stays in-house to the hosting organization and privacy-preserving mobility data management systems are in charge of privacy-aware sharing of the mobility data. In this chapter, we present the state-of-the-art of the latter approach, including systems such as HipStream, Hermes++, and Private-Hermes.

[1]  Nikos Pelekis,et al.  The DAEDALUS framework: progressive querying and mining of movement data , 2008, GIS '08.

[2]  Francesco Bonchi,et al.  Never Walk Alone: Uncertainty for Anonymity in Moving Objects Databases , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[3]  Marco Gruteser,et al.  Protecting Location Privacy Through Path Confusion , 2005, First International Conference on Security and Privacy for Emerging Areas in Communications Networks (SECURECOMM'05).

[4]  Nabil R. Adam,et al.  Security-control methods for statistical databases: a comparative study , 1989, ACM Comput. Surv..

[5]  Pierangela Samarati,et al.  Protecting Respondents' Identities in Microdata Release , 2001, IEEE Trans. Knowl. Data Eng..

[6]  Nikos Mamoulis,et al.  Privacy Preservation in the Publication of Trajectories , 2008, The Ninth International Conference on Mobile Data Management (mdm 2008).

[7]  Jae-Gil Lee,et al.  Trajectory clustering: a partition-and-group framework , 2007, SIGMOD '07.

[8]  Nikos Pelekis,et al.  Unsupervised Trajectory Sampling , 2010, ECML/PKDD.

[9]  David J. DeWitt,et al.  Mondrian Multidimensional K-Anonymity , 2006, 22nd International Conference on Data Engineering (ICDE'06).

[10]  Ali S. Hadi,et al.  Finding Groups in Data: An Introduction to Chster Analysis , 1991 .

[11]  Ramakrishnan Srikant,et al.  Hippocratic Databases , 2002, VLDB.

[12]  Yücel Saygin,et al.  Towards trajectory anonymization: a generalization-based approach , 2008, SPRINGL '08.

[13]  George Karypis,et al.  A Comparison of Document Clustering Techniques , 2000 .

[14]  Wei Wu,et al.  HipStream: A Privacy-Preserving System for Managing Mobility Data Streams , 2014, 2014 IEEE 15th International Conference on Mobile Data Management.

[15]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[16]  Dieter Pfoser,et al.  On Map-Matching Vehicle Tracking Data , 2005, VLDB.

[17]  Nikos Pelekis,et al.  Private-HERMES: a benchmark framework for privacy-preserving mobility data querying and mining methods , 2012, EDBT '12.

[18]  Nikos Pelekis,et al.  Visually exploring movement data via similarity-based analysis , 2012, Journal of Intelligent Information Systems.

[19]  Dino Pedreschi,et al.  Trajectory pattern mining , 2007, KDD '07.

[20]  Francesco Bonchi,et al.  Anonymization of moving objects databases by clustering and perturbation , 2010, Inf. Syst..

[21]  Nikos Pelekis,et al.  HERMES: aggregative LBS via a trajectory DB engine , 2008, SIGMOD Conference.

[22]  Dieter Pfoser,et al.  Novel Approaches to the Indexing of Moving Object Trajectories , 2000, VLDB.

[23]  Dino Pedreschi,et al.  Time-focused clustering of trajectories of moving objects , 2006, Journal of Intelligent Information Systems.

[24]  Nikos Pelekis,et al.  Clustering uncertain trajectories , 2011, Knowledge and Information Systems.

[25]  Latanya Sweeney,et al.  k-Anonymity: A Model for Protecting Privacy , 2002, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[26]  Aris Gkoulalas-Divanis,et al.  A privacy-aware trajectory tracking query engine , 2008, SKDD.

[27]  Nikos Pelekis,et al.  Privacy-aware querying over sensitive trajectory data , 2011, CIKM '11.

[28]  Hui Xiong,et al.  Preserving privacy in gps traces via uncertainty-aware path cloaking , 2007, CCS '07.