Analysis and design of supercontinuum pulse generation in a single-mode optical fiber: erratum

We present an analysis and describe the design of supercontinuum (SC) pulse generation in a single-mode optical fiber. SC generation with a dispersion-decreasing fiber with a convex dispersion profile is contrasted with other approaches to obtaining conditions for generating a flat, broadened spectrum. We present general criteria for SC generation by introducing normalized parameters that allow the shape of the SC spectrum to be invariant for several SC-generating fibers and optical pump pulses. Based on these results, we designed a SC fiber and experimentally generated SC pulses that were in good agreement with theory.

[1]  M. Wegener,et al.  Broad bandwidths from frequency-shifting solitons in fibers. , 1989, Optics letters.

[2]  Spectral approach to pulse propagation in a dispersive nonlinear medium , 1986 .

[3]  Toshio Morioka,et al.  1 Tbit/s (100 Gbit/s × 10 channel) OTDM/WDM transmission using a single supercontinuum WDM source , 1996 .

[4]  M. Nishimura,et al.  Dispersion-flattened and decreasing fiber for ultra-broadband supercontinuum generation , 1997 .

[5]  Toshio Morioka,et al.  Flatly broadened supercontinuum spectrum generated in a dispersion decreasing fibre with convex dispersion profile , 1997 .

[6]  Masatoshi Saruwatari,et al.  Eye-diagram measurement of 100 Gbit/s optical signal using optical sampling , 1996, Proceedings of European Conference on Optical Communication.

[7]  P. Francois Zero dispersion in attenuation optimized doubly clad fibers , 1983, Journal of Lightwave Technology.

[8]  M. J. O'Mahony,et al.  Optical amplifiers and their applications , 1989, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[9]  Toshio Morioka,et al.  106 /spl times/ 10 Gbit/s, 25 GHz-spaced, 640 km DWDM transmission employing a single supercontinuum multi-carrier source , 2001, CLEO 2001.

[10]  Kenneth O. Hill,et al.  cw three-wave mixing in single-mode optical fibers , 1978 .

[11]  O. Boyraz,et al.  150/sup +/ channel ultra-DWDM source with N/spl times/10 GHz spacing utilizing longitudinal mode slicing of supercontinuum , 2000, Optical Fiber Communication Conference. Technical Digest Postconference Edition. Trends in Optics and Photonics Vol.37 (IEEE Cat. No. 00CH37079).

[12]  Robert R. Alfano,et al.  Emission in the Region 4000 to 7000 Å Via Four-Photon Coupling in Glass , 1970 .

[13]  Toshio Morioka,et al.  Transform-limited, femtosecond WDM pulse generation by spectral filtering of gigahertz supercontinuum , 1994 .

[14]  William J. Wadsworth,et al.  Supercontinuum generation in tapered fibers. , 2000, Optics letters.

[15]  M. Monerie,et al.  Propagation in doubly clad single-mode fibers , 1982 .

[16]  Toshio Morioka,et al.  100Gbit/s x 4 ch, 100 km repeaterless TDM-WDM transmission using a single supercontinuum source , 1996 .

[17]  M. Saruwatari,et al.  Ultrawide spectral range group-velocity dispersion measurement utilizing supercontinuum in an optical fiber pumped by a 1.5 /spl mu/m compact laser source , 1995 .

[18]  A. Stentz,et al.  Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm , 2000 .

[19]  Toshio Morioka,et al.  Nearly penalty-free, <4 ps supercontinuum Gbit/s pulse generation over 1535-1560 nm , 1994 .

[20]  Pierre Luc Francois,et al.  Nonlinear propagation of ultrashort pulses in optical fibers: total field formulation in the frequency domain , 1991 .

[21]  H. Takara,et al.  3 Tbit/s (160 Gbit/s/spl times/19 channel) optical TDM and WDM transmission experiment , 1999 .

[22]  Leonard George Cohen,et al.  Low-loss quadruple-clad single-mode lightguides with dispersion below 2 ps/km nm over the 1.28 μm–1.65 μm wavelength range , 1982 .

[23]  H. Takara,et al.  A high SNR, 150 ch supercontinuum CW optical source with precise 25 GHz spacing for 10 Gbit/s DWDM systems , 2001, OFC 2001. Optical Fiber Communication Conference and Exhibit. Technical Digest Postconference Edition (IEEE Cat. 01CH37171).

[24]  B. Gross,et al.  The spectral distribution and the frequency shift of the supercontinuum , 1991 .

[25]  S V Chernikov,et al.  Generation of a train of fundamental solitons at a high repetition rate in optical fibers. , 1989, Optics letters.

[26]  Stegeman,et al.  Adiabatic compression of Schrödinger solitons due to the combined perturbations of higher-order dispersion and delayed nonlinear response. , 1993, Physical review letters.

[27]  M. Nishimura,et al.  Generation of ultra-broad-band supercontinuum by dispersion-flattened and decreasing fiber , 1998, IEEE Photonics Technology Letters.

[28]  Ozdal Boyraz,et al.  Broader and flatter supercontinuum spectra in dispersion-tailored fibers , 1997, Proceedings of Optical Fiber Communication Conference (.