Simulation of hydraulic fracturing using particle flow method and application in a coal mine

Abstract The purpose of hydraulic fracturing is to improve the gas permeability of a coal seam by the high-pressure injection of fracturing fluid into cracks. This paper simulates the hydraulic fracturing of a coal seam, investigates relevant parameters and analyzes the connection between macroscopic mechanical parameters and mesoscopic mechanical parameters based on two-dimensional particle flow code (PFC2D). Furthermore, the influence of macroscopic mechanical properties on the initiation and size of cracks is studied based on various combinations of particle flow calculations. Empirical formulae for the breakdown pressure and fracture radius are derived. Moreover, the effect of the injection parameters on crack propagation is computed and analyzed, after which the relevant empirical formula is proposed. Finally, numerical simulation of the working face N3704 at Yuyang Coal Mine (YCM) is conducted, and the comparison of results from simulation, empirical formulae and field observation is investigated. The research findings of this paper may provide a reference for selecting injection parameters and forecasting the effect in practical hydraulic fracturing applications.

[1]  Charles Fairhurst,et al.  Initiation and Extension of Hydraulic Fractures in Rocks , 1967 .

[2]  Md. Mofazzal Hossain,et al.  Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing , 2008 .

[3]  Bu Wan-kui Analysis of Fracture Propagation in Coal Seams During Hydraulic Fracturing , 2008 .

[4]  T. Ishida,et al.  The distinct element analysis for hydraulic fracturing in hard rock considering fluid viscosity and particle size distribution , 2011 .

[5]  Panos Papanastasiou,et al.  A coupled elastoplastic hydraulic fracturing model , 1997 .

[6]  H. Shimizu Distinct element modeling for fundamental rock fracturing and application to hydraulic fracturing , 2010 .

[7]  Tan Zhuoying IN-SITU STRESS MEASUREMENT BY HYDRAULIC FRACTURING TECHNIQUE IN DEEP POSITION OF WANFU COAL MINE , 2006 .

[8]  H. Horii,et al.  Micromechanics-based continuum model for hydraulic fracturing of jointed rock masses during HDR stimulation , 1998 .

[9]  Sheik S. Rahman,et al.  Horizontal permeability anisotropy: Effect upon the evaluation and design of primary and secondary hydraulic fracture treatments in tight gas reservoirs , 2010 .

[10]  Dusan Krajcinovic,et al.  Damage mechanics: accomplishments, trends and needs , 2000 .

[11]  P. Cundall,et al.  Lattice Boltzmann modeling of pore‐scale fluid flow through idealized porous media , 2011 .

[12]  C. Martin,et al.  A clumped particle model for rock , 2007 .

[13]  Milind Deo,et al.  Modeling Fluid Invasion and Hydraulic Fracture Propagation in Naturally Fractured Formations: A Three-Dimensional Approach , 2010 .

[14]  Jeoung Seok Yoon,et al.  Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation , 2007 .

[15]  Fulvio Tonon,et al.  Modeling Lac du Bonnet granite using a discrete element model , 2009 .

[16]  C. Fairhurst,et al.  Stress estimation in rock: a brief history and review , 2003 .

[17]  Abbas Ali Daneshy,et al.  On the Design of Vertical Hydraulic Fractures , 1973 .

[18]  Robert G. Jeffrey,et al.  Hydraulic fracturing applied to inducing longwall coal mine goaf falls , 2000 .

[19]  Karin Ackermann,et al.  Mechanics Of Hydraulic Fracturing , 2016 .

[20]  A. S. Tawadrous,et al.  Prediction of uniaxial compression PFC3D model micro‐properties using artificial neural networks , 2009 .

[21]  Norman R. Warpinski,et al.  Hydraulic-Fracture-Height Growth: Real Data , 2012 .

[22]  Tami C. Bond,et al.  Export efficiency of black carbon aerosol in continental outflow: Global implications , 2005 .

[23]  Y. Tsuji,et al.  Discrete particle simulation of two-dimensional fluidized bed , 1993 .

[24]  R. G. Jeffrey,et al.  Hydraulic Fracturing Experiments in the Great Northern Coal Seam , 1994 .

[25]  Norman Sartorius,et al.  Calgary, Alberta, Canada , 2005 .

[26]  T. K. Perkins,et al.  Widths of Hydraulic Fractures , 1961 .

[27]  Jinya Zhang,et al.  Three-dimensional finite element simulation and parametric study for horizontal well hydraulic fracture , 2010 .

[28]  J. Adachia,et al.  Computer simulation of hydraulic fractures , 2007 .

[29]  Mark D. Zoback,et al.  Laboratory hydraulic fracturing experiments in intact and pre-fractured rock , 1977 .

[30]  Pinnaduwa Kulatilake,et al.  Physical and particle flow modeling of jointed rock block behavior under uniaxial loading , 2001 .

[31]  P. Cundall A computer model for simulating progressive, large-scale movements in blocky rock systems , 1971 .

[32]  J. Geertsma,et al.  A Rapid Method of Predicting Width and Extent of Hydraulically Induced Fractures , 1969 .

[33]  Norman R. Warpinski Measurement of Width and Pressure in a Propagating Hydraulic Fracture , 1985 .

[34]  R. Conant,et al.  Hydraulic Fracture Reorientation in Primary and Secondary Recovery from Low-Permeability Reservoirs , 1995 .

[35]  F. Cornet,et al.  ISRM Suggested Methods for rock stress estimation; Part 3, Hydraulic fracturing (HF) and/ or hydraulic testing of pre-existing fractures (HTPF) , 2003 .

[36]  P. Cundall,et al.  A bonded-particle model for rock , 2004 .

[37]  Yutaka Tsuji,et al.  Lagrangian numerical simulation of plug flow of cohesionless particles in a horizontal pipe , 1992 .

[38]  Stephen A. Holditch,et al.  Evaluation of fracture treatments using a layered reservoir description: field examples , 1995 .

[39]  Xu Shou-ren,et al.  Theoretical Analysis and Practical Study on Reasonable Water Pressure of Hydro-fracturing Technology , 2010 .

[40]  E. Garboczi,et al.  FRACTURE SIMULATIONS OF CONCRETE USING LATTICE MODELS : COMPUTATIONAL ASPECTS , 1997 .

[41]  Christopher A. Wright,et al.  Diagnostic techniques to understand hydraulic fracturing: What? why? and how? , 2002 .

[42]  Jishan Liu,et al.  Numerical simulation of geofluid focusing and penetration due to hydraulic fracture , 2009 .

[43]  P. A. Cundall,et al.  LBM–DEM modeling of fluid–solid interaction in porous media , 2013 .

[44]  Reda Abdel Azim,et al.  Modeling hydraulic fractures in finite difference simulators using amalgam local grid refinement (LGR) , 2013, Journal of Petroleum Exploration and Production Technology.

[45]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[46]  B. Todd Hoffman,et al.  Modeling hydraulic fractures in finite difference simulators: Application to tight gas sands in Montana , 2009 .

[47]  R. P. Young,et al.  Distinct element modeling of hydraulically fractured Lac du Bonnet granite , 2005 .