New Conjugate Gradient Algorithms Based on New Conjugacy Condition

The nonlinear conjugate gradient (CG) algorithm is one of the most effective line search algorithms for optimization problems due to its simplicity and low memory requirements, particularly for large-scale problems. However, the results of the new conjugacy conditions are very limited. In this paper, we will propose a new conjugacy condition and two CG formulas. Global convergence is achieved for these algorithms, and numerical results are reported for Benchmark problems.

[1]  Boris Polyak The conjugate gradient method in extremal problems , 1969 .

[2]  William W. Hager,et al.  Algorithm 851: CG_DESCENT, a conjugate gradient method with guaranteed descent , 2006, TOMS.

[3]  William W. Hager,et al.  A New Conjugate Gradient Method with Guaranteed Descent and an Efficient Line Search , 2005, SIAM J. Optim..

[4]  Gonglin Yuan,et al.  A modified Polak–Ribière–Polyak conjugate gradient algorithm for large-scale optimization problems , 2014 .

[5]  Luigi Grippo,et al.  A globally convergent version of the Polak-Ribière conjugate gradient method , 1997, Math. Program..

[6]  Sam Kwong,et al.  Efficient Motion and Disparity Estimation Optimization for Low Complexity Multiview Video Coding , 2015, IEEE Transactions on Broadcasting.

[7]  Yuhong Dai Nonlinear Conjugate Gradient Methods , 2011 .

[8]  Gonglin Yuan,et al.  Modified nonlinear conjugate gradient methods with sufficient descent property for large-scale optimization problems , 2009, Optim. Lett..

[9]  Ya-Xiang Yuan,et al.  A Nonlinear Conjugate Gradient Method with a Strong Global Convergence Property , 1999, SIAM J. Optim..

[10]  Ya-Xiang Yuan Analysis on the conjugate gradient method , 1993 .

[11]  C. M. Reeves,et al.  Function minimization by conjugate gradients , 1964, Comput. J..

[12]  L. Liao,et al.  New Conjugacy Conditions and Related Nonlinear Conjugate Gradient Methods , 2001 .

[13]  Hiroshi Yabe,et al.  Global Convergence Properties of Nonlinear Conjugate Gradient Methods with Modified Secant Condition , 2004, Comput. Optim. Appl..

[14]  Xingming Sun,et al.  Segmentation-Based Image Copy-Move Forgery Detection Scheme , 2015, IEEE Transactions on Information Forensics and Security.

[15]  Bo-Shi Tian,et al.  Global convergence of some modified PRP nonlinear conjugate gradient methods , 2011, Optim. Lett..

[16]  DaiYuhong,et al.  A NONMONOTONE CONJUGATE GRADIENT ALGORITHM FOR UNCONSTRAINED OPTIMIZATION , 2002 .

[17]  S. Siva Sathya,et al.  Convergence of nomadic genetic algorithm on benchmark mathematical functions , 2013, Appl. Soft Comput..

[18]  Jingfeng Zhang,et al.  New Quasi-Newton Equation and Related Methods for Unconstrained Optimization , 1999 .

[19]  Xiwen Lu,et al.  A conjugate gradient method with descent direction for unconstrained optimization , 2009, J. Comput. Appl. Math..

[20]  Liying Liu,et al.  The convergence properties of some new conjugate gradient methods , 2006, Appl. Math. Comput..

[21]  Guoyin Li,et al.  New nonlinear conjugate gradient formulas for large-scale unconstrained optimization problems , 2006, Appl. Math. Comput..

[22]  M. Powell Convergence properties of algorithms for nonlinear optimization , 1986 .

[23]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[24]  M. Powell Nonconvex minimization calculations and the conjugate gradient method , 1984 .

[25]  Jorge Nocedal,et al.  Global Convergence Properties of Conjugate Gradient Methods for Optimization , 1992, SIAM J. Optim..

[26]  E. Polak,et al.  Note sur la convergence de méthodes de directions conjuguées , 1969 .

[27]  W. Hager,et al.  A SURVEY OF NONLINEAR CONJUGATE GRADIENT METHODS , 2005 .

[28]  Zhihua Xia,et al.  A Secure and Dynamic Multi-Keyword Ranked Search Scheme over Encrypted Cloud Data , 2016, IEEE Transactions on Parallel and Distributed Systems.

[29]  Xiwen Lu,et al.  A modified PRP conjugate gradient method , 2009, Ann. Oper. Res..

[30]  Bin Gu,et al.  Incremental Support Vector Learning for Ordinal Regression , 2015, IEEE Transactions on Neural Networks and Learning Systems.

[31]  Guoyin Li,et al.  New conjugacy condition and related new conjugate gradient methods for unconstrained optimization , 2007 .

[32]  Weijun Zhou,et al.  A descent modified Polak–Ribière–Polyak conjugate gradient method and its global convergence , 2006 .

[33]  T. M. Williams,et al.  Practical Methods of Optimization. Vol. 1: Unconstrained Optimization , 1980 .