Nonlinear structural dynamical system identification using adaptive particle filters

The problem of identifying parameters of nonlinear vibrating systems using spatially incomplete, noisy, time-domain measurements is considered. The problem is formulated within the framework of dynamic state estimation formalisms that employ particle filters. The parameters of the system, which are to be identified, are treated as a set of random variables with finite number of discrete states. The study develops a procedure that combines a bank of self-learning particle filters with a global iteration strategy to estimate the probability distribution of the system parameters to be identified. Individual particle filters are based on the sequential importance sampling filter algorithm that is readily available in the existing literature. The paper develops the requisite recursive formulary for evaluating the evolution of weights associated with system parameter states. The correctness of the formulations developed is demonstrated first by applying the proposed procedure to a few linear vibrating systems for which an alternative solution using adaptive Kalman filter method is possible. Subsequently, illustrative examples on three nonlinear vibrating systems, using synthetic vibration data, are presented to reveal the correct functioning of the method.

[1]  M. Imregun A Survey of Nonlinear Analysis Tools for Structural Systems , 1998 .

[2]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[3]  Michael A. West,et al.  Combined Parameter and State Estimation in Simulation-Based Filtering , 2001, Sequential Monte Carlo Methods in Practice.

[4]  Jun S. Liu,et al.  Sequential Monte Carlo methods for dynamic systems , 1997 .

[5]  Branko Ristic,et al.  Beyond the Kalman Filter: Particle Filters for Tracking Applications , 2004 .

[6]  B. Peeters,et al.  Stochastic System Identification for Operational Modal Analysis: A Review , 2001 .

[7]  Masanobu Shinozuka,et al.  Fundamentals of system identification in structural dynamics , 1989 .

[8]  G. R. Tomlinson,et al.  Nonlinearity in experimental modal analysis , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Julius S. Bendat,et al.  Nonlinear System Techniques And Applications , 1990 .

[10]  Richard A. Brown,et al.  Introduction to random signals and applied kalman filtering (3rd ed , 2012 .

[11]  Yukito IBA,et al.  Population Monte Carlo algorithms , 2000, cond-mat/0008226.

[12]  Nando de Freitas,et al.  Sequential Monte Carlo Methods in Practice , 2001, Statistics for Engineering and Information Science.

[13]  R. Ghanem,et al.  Structural-System Identification. I: Theory , 1995 .

[14]  Arnaud Doucet,et al.  A survey of convergence results on particle filtering methods for practitioners , 2002, IEEE Trans. Signal Process..

[15]  J. Beck,et al.  Bayesian State and Parameter Estimation of Uncertain Dynamical Systems , 2006 .

[16]  T. Kailath Lectures on Wiener and Kalman Filtering , 2003 .

[17]  K. Worden,et al.  Past, present and future of nonlinear system identification in structural dynamics , 2006 .

[18]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[19]  D. Magill Optimal adaptive estimation of sampled stochastic processes , 1965 .

[20]  D. Inman Nonlinearity in Structural Dynamics: Detection, Identification and Modelling , 2002 .

[21]  John E. Mottershead,et al.  Finite Element Model Updating in Structural Dynamics , 1995 .

[22]  C. S. Manohar,et al.  Monte Carlo filters for identification of nonlinear structural dynamical systems , 2006 .

[23]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[24]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[25]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[26]  Hisashi Tanizaki,et al.  Nonlinear Filters: Estimation and Applications , 1993 .

[27]  Dan Svenstrup,et al.  Monte Carlo methods for dynamical systems , 2009 .

[28]  David J. Ewins,et al.  Modal Testing: Theory, Practice, And Application , 2000 .

[29]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[30]  Chris L. Pettit,et al.  Uncertainties and dynamic problems of bolted joints and other fasteners , 2005 .

[31]  Mohinder S. Grewal,et al.  Kalman Filtering: Theory and Practice Using MATLAB , 2001 .

[32]  J. Zhang,et al.  Identification of nonlinear structural dynamical system , 1994 .

[33]  Simon J. Godsill,et al.  On sequential simulation-based methods for Bayesian filtering , 1998 .

[34]  Guanrong Chen,et al.  Kalman Filtering with Real-time Applications , 1987 .

[35]  G. Tomlinson,et al.  Nonlinearity in Structural Dynamics: Detection, Identification and Modelling , 2000 .

[36]  Nicholas A J Lieven,et al.  The context of experimental modal analysis , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[37]  W. Schultz,et al.  Eigenvalue analysis of Timoshenko beams and axisymmetric Mindlin plates by the pseudospectral method , 2004 .