Finite volume radiative heat transfer procedure for irregular geometries

A finite volume method for irregular geometries is presented in this article. The capability of the procedure is tested using five test problems. In these tests, transparent, absorbing, emitting, and anisotropically scattering media are examined. The solutions indicate that the finite volume method is a viable solution procedure for radiative heat transfer processes.

[1]  Suhas V. Patankar,et al.  Improved Treatment of Scattering Using the Discrete Ordinates Method , 1994 .

[2]  Wei Shyy,et al.  Numerical Recirculating Flow Calculation Using a Body-Fitted Coordinate System , 1985 .

[3]  Åke Björck,et al.  Numerical Methods , 1995, Handbook of Marine Craft Hydrodynamics and Motion Control.

[4]  G. Raithby,et al.  Prediction of radiative transfer in cylindrical enclosures with the finite volume method , 1992 .

[5]  G. Raithby,et al.  COMPUTATION OF RADIANT HEAT TRANSFER ON A NONORTHOGONAL MESH USING THE FINITE-VOLUME METHOD , 1993 .

[6]  M. Peric A finite volume method for the prediction of three-dimensional fluid flow in complex ducts , 1985 .

[7]  Gerry E. Schneider,et al.  Control Volume Finite-Element Method for Heat Transfer and Fluid Flow Using Colocated Variables— 1. Computational Procedure , 1987 .

[8]  B. R. Baliga,et al.  A CONTROL VOLUME FINITE-ELEMENT METHOD FOR TWO-DIMENSIONAL FLUID FLOW AND HEAT TRANSFER , 1983 .

[9]  S. Patankar,et al.  Evaluation of spatial differencing practices for the discrete-ordinates method , 1994 .

[10]  J. P. Jessee,et al.  Finite element formulation of the discrete-ordinates method for multidimensional geometries , 1994 .

[11]  S. Patankar,et al.  Monte Carlo Solutions for Radiative Heat Transfer in Irregular Two-Dimensional Geometries , 1995 .

[12]  Theodore F. Smith,et al.  Surface Radiation Exchange for Two-Dimensional Rectangular Enclosures Using the Discrete-Ordinates Method , 1992 .

[13]  S. Patankar,et al.  Finite volume method for radiation heat transfer , 1994 .

[14]  Suhas V. Patankar,et al.  Treatment of irregular geometries using a Cartesian coordinates finite-volume radiation heat transfer procedure , 1994 .

[15]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[16]  G. D. Raithby,et al.  A Finite-Volume Method for Predicting a Radiant Heat Transfer in Enclosures With Participating Media , 1990 .

[17]  K. Kelkar,et al.  NUMERICAL METHOD FOR THE COMPUTATION OF FLOW AND SCALAR TRANSPORT USING NONORTHOGONAL BOUNDARY-FITTED COORDINATES , 1993 .

[18]  J. P. Jessee,et al.  Comparison of discrete ordinates formulations for radiative heat transfer in multidimensional geometries , 1995 .

[19]  Suhas V. Patankar,et al.  CALCULATION PROCEDURE FOR VISCOUS INCOMPRESSIBLE FLOWS IN COMPLEX GEOMETRIES , 1988 .

[20]  Suhas V. Patankar,et al.  SOLUTION OF SOME TWO-DIMENSIONAL INCOMPRESSIBLE FLOW PROBLEMS USING A CURVILINEAR COORDINATE SYSTEM BASED CALCULATION PROCEDURE , 1988 .

[21]  Joe F. Thompson,et al.  Numerical grid generation: Foundations and applications , 1985 .

[22]  Tae-Kuk Kim,et al.  Effect of anisotropic scattering on radiative heat transfer in two-dimensional rectangular enclosures , 1988 .