Optimizing electrode positions and analysis strategies for multifocal VEP recordings by ROC analysis

The multifocal visual evoked potential (mfVEP) is an important tool to test visual pathway function. The aim of this study was to optimize electrode positions in mfVEP recordings. For analysis we applied a receiver operating characteristic (ROC), a method that inherently corrects for multiple testing. We found that a combination of two perpendicular derivations-both straddling the inion-was the most effective recording setup. Adding more than two derivations did not significantly increase the sensitivity. Thus optimal mfVEP detection can be achieved with a fairly simple recording setup which may facilitate mfVEP recordings in basic research and clinical routine.

[1]  S L Graham,et al.  Electroencephalogram-based scaling of multifocal visual evoked potentials: effect on intersubject amplitude variability. , 2001, Investigative ophthalmology & visual science.

[2]  S. Graham,et al.  Electrode position and the multi-focal visual-evoked potential: role in objective visual field assessment. , 1998, Australian and New Zealand journal of ophthalmology.

[3]  D. Altman,et al.  Multiple significance tests: the Bonferroni method , 1995, BMJ.

[4]  K Nakayama,et al.  Binocularity in the human visual evoked potential: facilitation, summation and suppression. , 1981, Electroencephalography and clinical neurophysiology.

[5]  S. Klein,et al.  The topography of visual evoked response properties across the visual field. , 1994, Electroencephalography and clinical neurophysiology.

[6]  E. Sutter,et al.  M and P Components of the VEP and their Visual Field Distribution , 1997, Vision Research.

[7]  Donald C. Hood,et al.  Quantifying the benefits of additional channels of multifocal VEP recording , 2002, Documenta Ophthalmologica.

[8]  J A Swets,et al.  Form of empirical ROCs in discrimination and diagnostic tasks: implications for theory and measurement of performance. , 1986, Psychological bulletin.

[9]  Chris A. Johnson,et al.  Determining abnormal latencies of multifocal visual evoked potentials: a monocular analysis , 2004, Documenta Ophthalmologica.

[10]  W A Douthwaite,et al.  Effect of attention on the VEP in binocular and monocular conditions , 1992, Ophthalmic & physiological optics : the journal of the British College of Ophthalmic Opticians.

[11]  S. Graham,et al.  Multifocal pattern VEP perimetry: analysis of sectoral waveforms , 2004, Documenta Ophthalmologica.

[12]  S. Graham,et al.  Multifocal topographic visual evoked potential: improving objective detection of local visual field defects. , 1998, Investigative ophthalmology & visual science.

[13]  Erich E. Sutter,et al.  The Fast m-Transform: A Fast Computation of Cross-Correlations with Binary m-Sequences , 1991, SIAM J. Comput..

[14]  Ivan Goldberg,et al.  Clinical application of objective perimetry using multifocal visual evoked potentials in glaucoma practice. , 2005, Archives of ophthalmology.

[15]  Donald C. Hood,et al.  Determining abnormal interocular latencies of multifocal visual evoked potentials , 2004, Documenta Ophthalmologica.

[16]  J. Odom VISUAL EVOKED POTENTIALS STANDARD , 2004 .

[17]  D. Hood,et al.  Detecting Glaucomatous Damage with Multifocal Visual Evoked Potentials: How Can a Monocular Test Work? , 2003, Journal of glaucoma.

[18]  S L Graham,et al.  Objective VEP Perimetry in Glaucoma: Asymmetry Analysis to Identify Early Deficits , 2000, Journal of glaucoma.

[19]  S Kangovi,et al.  An interocular comparison of the multifocal VEP: a possible technique for detecting local damage to the optic nerve. , 2000, Investigative ophthalmology & visual science.

[20]  J A Swets,et al.  Measuring the accuracy of diagnostic systems. , 1988, Science.

[21]  Erich E. Sutter,et al.  The field topography of ERG components in man—I. The photopic luminance response , 1992, Vision Research.

[22]  A. James The pattern-pulse multifocal visual evoked potential. , 2003, Investigative ophthalmology & visual science.

[23]  S. Graham,et al.  Objective perimetry in glaucoma. , 2000, Ophthalmology.

[24]  Vaegan,et al.  Visual evoked potentials standard (2004) , 2004, Documenta Ophthalmologica.

[25]  Erich Sutter,et al.  The interpretation of multifocal binary kernels , 2004, Documenta Ophthalmologica.

[26]  R A Dobie,et al.  Objective response detection in the frequency domain. , 1993, Electroencephalography and clinical neurophysiology.

[27]  M. Bach,et al.  Pattern-onset stimulation boosts central multifocal VEP responses. , 2003, Journal of vision.

[28]  Donald C Hood,et al.  Multifocal VEP and ganglion cell damage: applications and limitations for the study of glaucoma , 2003, Progress in Retinal and Eye Research.

[29]  Vision Research , 1961, Nature.

[30]  Vasilis Z. Marmarelis,et al.  Analysis of Physiological Systems , 1978, Computers in Biology and Medicine.

[31]  Donald C. Hood,et al.  Multifocal ERG and VEP responses and visual fields: comparing disease-related changes , 2004, Documenta Ophthalmologica.

[32]  Donald C. Hood,et al.  A signal-to-noise analysis of multifocal VEP responses: an objective definition for poor records , 2002, Documenta Ophthalmologica.