The Fundamental Pro-groupoid of an Affine 2-scheme

A natural question in the theory of Tannakian categories is: What if you don’t remember Forget? Working over an arbitrary commutative ring R, we prove that an answer to this question is given by the functor represented by the étale fundamental groupoid π1(spec(R)), i.e. the separable absolute Galois group of R when it is a field. This gives a new definition for étale π1(spec(R)) in terms of the category of R-modules rather than the category of étale covers. More generally, we introduce a new notion of “commutative 2-ring” that includes both Grothendieck topoi and symmetric monoidal categories of modules, and define a notion of π1 for the corresponding “affine 2-schemes.” These results help to simplify and clarify some of the peculiarities of the étale fundamental group. For example, étale fundamental groups are not “true” groups but only profinite groups, and one cannot hope to recover more: the “Tannakian” functor represented by the étale fundamental group of a scheme preserves finite products but not all products.

[1]  B. M. Fulk MATH , 1992 .

[2]  Robert Wisbauer,et al.  Corings and Comodules , 2003 .

[3]  S. Lane Categories for the Working Mathematician , 1971 .

[4]  Bertrand Toen,et al.  Homotopical algebraic geometry. I. Topos theory. , 2002, math/0207028.

[5]  J. Adámek,et al.  Locally Presentable and Accessible Categories: Bibliography , 1994 .

[6]  Jacob Lurie,et al.  Higher Topos Theory (AM-170) , 2009 .

[7]  W. J. Thron,et al.  Encyclopedia of Mathematics and its Applications. , 1982 .

[8]  J. B. Ferguson,et al.  Motives , 1983 .

[9]  P. Steerenberg,et al.  Targeting pathophysiological rhythms: prednisone chronotherapy shows sustained efficacy in rheumatoid arthritis. , 2010, Annals of the rheumatic diseases.

[10]  The separable Galois theory of commutative rings , 1974 .

[11]  R. Street Correction to “Fibrations in bicategories” , 1987 .

[12]  George Janelidze,et al.  Galois Theories: General index , 2001 .

[13]  F. E. J. Linton,et al.  Some Aspects of Equational Categories , 1966 .

[14]  Hans-E. Porst,et al.  On Categories of Monoids, Comonoids, and Bimonoids , 2008 .

[15]  J. Benabou Introduction to bicategories , 1967 .

[16]  K. Ulbrich Fibre functors of finite dimensional comodules , 1989 .

[17]  Jirí Rosický,et al.  On essentially algebraic theorries and their generalizations , 1999 .

[18]  J. Bichon Hopf-Galois objects and cogroupoids , 2010, 1006.3014.

[19]  橋本 武久,et al.  Simon Stevin「簿記論」の原型 , 2006 .

[20]  Derived Algebraic Geometry III: Commutative Algebra , 2007, math/0703204.

[21]  E. Friedlander Etale Homotopy of Simplicial Schemes. , 1982 .

[22]  F. W. Lawvere,et al.  FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Tannaka Duality for Geometric Stacks , 2004, math/0412266.

[24]  K. N. Dollman,et al.  - 1 , 1743 .

[25]  J. Lurie Derived Algebraic Geometry V: Structured Spaces , 2009, 0905.0459.

[26]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[27]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[28]  Ross Street,et al.  AN INTRODUCTION TO TANNAKA DUALITY AND QUANTUM GROUPS , 1991 .

[29]  Tom Leinster Higher Operads, Higher Categories , 2003 .

[30]  F. Beaufils,et al.  FRANCE , 1979, The Lancet.

[31]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[32]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[33]  P. Etingof,et al.  Fusion categories and homotopy theory , 2009, 0909.3140.

[34]  Stacky Lie Groups , 2007, math/0702399.

[35]  P. Gabriel,et al.  Lokal α-präsentierbare Kategorien , 1971 .

[36]  G. M. Kelly Elementary observations on 2-categorical limits , 1989, Bulletin of the Australian Mathematical Society.

[37]  G. M. Kelly,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY , 2022, Elements of ∞-Category Theory.

[38]  Friedrich Ulmer Locally α-presentable and locally α-generated categories , 1971 .

[39]  From Hag To Dag: Derived Moduli Stacks , 2002, math/0210407.

[40]  Module categories over representations of $SL_q(2)$ and graphs , 2003, math/0302130.

[41]  Dimitrios J. Economou On Galois theories , 2014 .

[42]  Martin Brandenburg Tensorial schemes , 2011, 1110.6523.

[43]  Pierre Deligne,et al.  Hodge Cycles, Motives, and Shimura Varieties , 1989 .

[44]  Law Fw FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963 .

[45]  B. Toën Higher and derived stacks: a global overview , 2009 .

[46]  J. Isbell,et al.  Reports of the Midwest Category Seminar I , 1967 .

[47]  Ross Street,et al.  Fibrations in bicategories , 1980 .

[48]  Jiří Adámek Colimits of algebras revisited , 1977, Bulletin of the Australian Mathematical Society.

[49]  G. Vezzosi,et al.  Homotopical Algebraic Geometry II: Geometric Stacks and Applications , 2004, math/0404373.

[50]  Derived Algebraic Geometry II: Noncommutative Algebra , 2007, math/0702299.

[51]  P. Gabriel,et al.  Des catégories abéliennes , 1962 .

[52]  C. Ricketts Pages on Art , 2015 .

[53]  G. M. Kelly A survey of totality for enriched and ordinary categories , 1986 .