A sequential and parallel algorithm for disjoint cliques problem on interval graphs

Using DAG approach,A sequential algorithm is presented to solve disjoint cliques problem on interval graph G which takes O(n^2) time where n is the number of vertices of the graph. For the same problem a O(log2n) time parallel algorithm is presented which takes processors on an EREW PRAM model. Also, on a CREW model it takes O(logn) time with O(n^(3+e) ),e>0 processors.

[1]  P. Gilmore,et al.  A Characterization of Comparability Graphs and of Interval Graphs , 1964, Canadian Journal of Mathematics.

[2]  Madhumangal Pal,et al.  The Parallel Algorithms for Determining Edge-packing and Efficient Edge Dominating Sets in Interval Graphs , 1995, Parallel Algorithms Appl..

[3]  J R Jungck,et al.  Computer-assisted sequencing, interval graphs, and molecular evolution. , 1982, Bio Systems.

[4]  M. Golummc Algorithmic graph theory and perfect graphs , 1980 .

[5]  Madhumangal Pal,et al.  An optimal parallel algorithm for computing cut vertices and blocks on interval graphs , 2000, Int. J. Comput. Math..

[6]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[7]  David S. Johnson,et al.  The NP-Completeness Column: An Ongoing Guide , 1982, J. Algorithms.

[8]  Madhumangal Pal,et al.  Computation of inverse 1-centre location problem on the weighted interval graphs , 2017, Int. J. Comput. Sci. Math..

[9]  András Frank,et al.  On chain and antichain families of a partially ordered set , 1980, J. Comb. Theory, Ser. B.

[10]  Vishnu Narayan Mishra,et al.  Trigonometric Approximation of Signals ( Functions ) in Lp-Norm , 2012 .

[11]  A. Hashimoto,et al.  Wire routing by optimizing channel assignment within large apertures , 1971, DAC '71.

[12]  Frances E. Allen,et al.  Automatic storage optimization , 2004, SIGP.

[13]  Tatsuo Ohtsuki,et al.  One-dimensional logic gate assignment and interval graphs , 1979, COMPSAC.

[14]  Mihalis Yannakakis,et al.  The Maximum k-Colorable Subgraph Problem for Chordal Graphs , 1987, Inf. Process. Lett..

[15]  Madhumangal Pal,et al.  Minimum 2-Tuple Dominating Set of an Interval Graph , 2011 .

[16]  Klaus Jansen,et al.  The Disjoint Cliques Problem , 1992, Universität Trier, Mathematik/Informatik, Forschungsbericht.

[17]  M. Pal,et al.  The Diameter of an Interval Graph is Twice of its Radius , 2011 .

[18]  Madhumangal Pal,et al.  Optimal sequential and parallel algorithms for computing the diameter and the center of an interval graph , 1995, Int. J. Comput. Math..