Evolutionary significance of an algal gene encoding an [FeFe]-hydrogenase with F-domain homology and hydrogenase activity in Chlorella variabilis NC64A

[1]  Michael Seibert,et al.  A truncated antenna mutant of Chlamydomonas reinhardtii can produce more hydrogen than the parental strain , 2011 .

[2]  D. Baulcombe,et al.  RNA silencing of hydrogenase(-like) genes and investigation of their physiological roles in the green alga Chlamydomonas reinhardtii. , 2010, The Biochemical journal.

[3]  Jean-Michel Claverie,et al.  The Chlorella variabilis NC64A Genome Reveals Adaptation to Photosymbiosis, Coevolution with Viruses, and Cryptic Sex[C][W] , 2010, Plant Cell.

[4]  G. Charles Dismukes,et al.  Increased Lipid Accumulation in the Chlamydomonas reinhardtiista7-10 Starchless Isoamylase Mutant and Increased Carbohydrate Synthesis in Complemented Strains , 2010, Eukaryotic Cell.

[5]  Robert E. Jinkerson,et al.  Genetic Engineering of Algae for Enhanced Biofuel Production , 2010, Eukaryotic Cell.

[6]  P. Lindblad,et al.  Evidence for transcription of three genes with characteristics of hydrogenases in the green alga Chlamydomonas noctigama , 2010 .

[7]  J. V. Van Etten,et al.  Microarray Analysis of Paramecium bursaria Chlorella Virus 1 Transcription , 2009, Journal of Virology.

[8]  M. Ghirardi,et al.  Phenotypic diversity of hydrogen production in chlorophycean algae reflects distinct anaerobic metabolisms. , 2009, Journal of biotechnology.

[9]  John W. Peters,et al.  [FeFe] Hydrogenase Genetic Diversity Provides Insight into Molecular Adaptation in a Saline Microbial Mat Community , 2009, Applied and Environmental Microbiology.

[10]  A. Darling,et al.  Phylogenetic and molecular analysis of hydrogen-producing green algae , 2009, Journal of experimental botany.

[11]  A. Hemschemeier,et al.  Analytical approaches to photobiological hydrogen production in unicellular green algae , 2009, Photosynthesis Research.

[12]  M. Posewitz,et al.  Flexibility in Anaerobic Metabolism as Revealed in a Mutant of Chlamydomonas reinhardtii Lacking Hydrogenase Activity* , 2009, Journal of Biological Chemistry.

[13]  A. Hemschemeier,et al.  A novel screening protocol for the isolation of hydrogen producing Chlamydomonas reinhardtii strains , 2008, BMC Plant Biology.

[14]  G. Ananyev,et al.  Optimization of Metabolic Capacity and Flux through Environmental Cues To Maximize Hydrogen Production by the Cyanobacterium “Arthrospira (Spirulina) maxima” , 2008, Applied and Environmental Microbiology.

[15]  G Charles Dismukes,et al.  Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. , 2008, Current opinion in biotechnology.

[16]  W. Lubitz,et al.  Isolation and first EPR characterization of the [FeFe]-hydrogenases from green algae. , 2008, Biochimica et biophysica acta.

[17]  M. Posewitz,et al.  New Frontiers in Hydrogenase Structure and Biosynthesis , 2008 .

[18]  Rodrigo Lopez,et al.  Clustal W and Clustal X version 2.0 , 2007, Bioinform..

[19]  Sara L. Zimmer,et al.  The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions , 2007, Science.

[20]  P. Vignais,et al.  Occurrence, classification, and biological function of hydrogenases: an overview. , 2007, Chemical reviews.

[21]  Arthur R. Grossman,et al.  Anaerobic Acclimation in Chlamydomonas reinhardtii , 2007, Journal of Biological Chemistry.

[22]  Michael Seibert,et al.  Hydrogenases and hydrogen photoproduction in oxygenic photosynthetic organisms. , 2007, Annual review of plant biology.

[23]  Simon Prochnik,et al.  Novel metabolism in Chlamydomonas through the lens of genomics. , 2007, Current opinion in plant biology.

[24]  J. Meyer,et al.  [FeFe] hydrogenases and their evolution: a genomic perspective , 2007, Cellular and Molecular Life Sciences.

[25]  F. Rey,et al.  Regulation of Uptake Hydrogenase and Effects of Hydrogen Utilization on Gene Expression in Rhodopseudomonas palustris , 2006, Journal of bacteriology.

[26]  Klaus Schulten,et al.  Structural and functional investigations of biological catalysts for optimization of solar-driven H2 production systems , 2006, SPIE Optics + Photonics.

[27]  O. Gascuel,et al.  Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. , 2006, Systematic biology.

[28]  Olaf Kruse,et al.  Improved Photobiological H2 Production in Engineered Green Algal Cells* , 2005, Journal of Biological Chemistry.

[29]  David Posada,et al.  ProtTest: selection of best-fit models of protein evolution , 2005, Bioinform..

[30]  K Schulten,et al.  Molecular dynamics and experimental investigation of H(2) and O(2) diffusion in [Fe]-hydrogenase. , 2005, Biochemical Society transactions.

[31]  R. McCourt,et al.  Green algae and the origin of land plants. , 2004, American journal of botany.

[32]  Michael Seibert,et al.  Discovery of Two Novel Radical S-Adenosylmethionine Proteins Required for the Assembly of an Active [Fe] Hydrogenase* , 2004, Journal of Biological Chemistry.

[33]  O. Gascuel,et al.  A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. , 2003, Systematic biology.

[34]  M. Ghirardi,et al.  Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. , 2003, European journal of biochemistry.

[35]  Michael Seibert,et al.  Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. , 2003, Plant & cell physiology.

[36]  T. Happe,et al.  Isolation and molecular characterization of the [Fe]-hydrogenase from the unicellular green alga Chlorella fusca. , 2002, Biochimica et biophysica acta.

[37]  A. Kaminski,et al.  Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. , 2002, European journal of biochemistry.

[38]  A. Melis,et al.  Hydrogen production. Green algae as a source of energy. , 2001, Plant physiology.

[39]  John P. Huelsenbeck,et al.  MRBAYES: Bayesian inference of phylogenetic trees , 2001, Bioinform..

[40]  T. Happe,et al.  A Novel Type of Iron Hydrogenase in the Green AlgaScenedesmus obliquus Is Linked to the Photosynthetic Electron Transport Chain* , 2001, The Journal of Biological Chemistry.

[41]  M. Ghirardi,et al.  Oxygen sensitivity of algal H2- production , 1997 .

[42]  S. Maberly,et al.  Spectacular abundance of ciliates in anoxic pond water: contribution of symbiont photosynthesis to host respiratory oxygen requirements , 1996 .

[43]  Shi Zheng—li,et al.  Viruses and virus-like particles of eukaryotic algae , 1996 .

[44]  J. Naber,et al.  Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. , 1993, European journal of biochemistry.

[45]  J. V. Van Etten,et al.  Viruses and viruslike particles of eukaryotic algae , 1991, Microbiological reviews.

[46]  R. J. Porra,et al.  Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy , 1989 .

[47]  Elizabeth H. Harris,et al.  The Chlamydomonas Sourcebook: A Comprehensive Guide to Biology and Laboratory Use , 1989 .

[48]  J. Wright,et al.  Hydrogen production by eukaryotic algae. , 1989, Biotechnology and bioengineering.

[49]  P. Nielsen,et al.  Transfer of photosynthetically produced carbohydrate from endosymbiotic Chlorellae to Paramecium bursaria. , 1974, The Journal of protozoology.

[50]  S. Karakashian,et al.  Electron Microscopic Observations on the Symbiosis of Paramecium bursaria and its Intracellular Algae , 1968 .

[51]  R. Guillard,et al.  Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt, and Detonula confervacea (cleve) Gran. , 1962, Canadian journal of microbiology.

[52]  D. Morris Quantitative Determination of Carbohydrates With Dreywood's Anthrone Reagent. , 1948, Science.

[53]  J. B. Loefer Isolation and Growth Characteristics of the "Zoochlorella" of Paramecium bursaria , 1936, The American Naturalist.

[54]  M. Posewitz,et al.  Genetic engineering of fatty acid chain length in Phaeodactylum tricornutum. , 2011, Metabolic engineering.

[55]  Matthew C. Posewitz,et al.  Chapter 7 – Hydrogenases, Hydrogen Production, and Anoxia , 2009 .

[56]  N. Imamura,et al.  Metabolic Control Between the Symbiotic Chlorella and the Host Paramecium , 2009 .

[57]  M. Ghirardi,et al.  Photobiological hydrogen-producing systems. , 2009, Chemical Society reviews.

[58]  E. H. Harris The Chlamydomonas sourcebook , 2009 .

[59]  P. Lindblad,et al.  H2 production from marine and freshwater species of green algae during sulfur deprivation and considerations for bioreactor design , 2008 .

[60]  Michael Seibert,et al.  Hydrogen fuel production by transgenic microalgae. , 2007, Advances in experimental medicine and biology.

[61]  G. Carmichael,et al.  RNA Silencing , 2005, Methods in Molecular Biology™.

[62]  Lu Zhang,et al.  Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. , 2000, Plant physiology.

[63]  M. Ghirardi,et al.  Oxygen sensitivity of algal H2-production , 1997, Applied biochemistry and biotechnology.

[64]  J. H. Ryther,et al.  Studies of marine planktonic diatoms , 1962 .

[65]  W. E. Trevelyan,et al.  Studies on yeast metabolism. 1. Fractionation and microdetermination of cell carbohydrates , 1952 .

[66]  A. Balls,et al.  STUDIES IN YEAST METABOLISM. I , 1925 .