Phylogenetic, functional and geological perspectives on complex multicellularity

[1]  D. Sumner,et al.  Late Archean molecular fossils from the Transvaal Supergroup record the antiquity of microbial diversity and aerobiosis , 2009 .

[2]  Daniel J. Condon,et al.  Fossil steroids record the appearance of Demospongiae during the Cryogenian period , 2009, Nature.

[3]  S. Harris,et al.  The archaebacterial origin of eukaryotes , 2008, Proceedings of the National Academy of Sciences.

[4]  I. Fletcher,et al.  Reassessing the first appearance of eukaryotes and cyanobacteria , 2008, Nature.

[5]  A. Knoll,et al.  Ferruginous Conditions Dominated Later Neoproterozoic Deep-Water Chemistry , 2008, Science.

[6]  A. Knoll,et al.  Sterols in a unicellular relative of the metazoans , 2008, Proceedings of the National Academy of Sciences.

[7]  A. Anbar,et al.  Tracing the stepwise oxygenation of the Proterozoic ocean , 2008, Nature.

[8]  N. King,et al.  The Premetazoan Ancestry of Cadherins , 2008, Science.

[9]  Nicholas H. Putnam,et al.  The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans , 2008, Nature.

[10]  L. Schwartz,et al.  Cancer as a consequence of the rising level of oxygen in the Late Precambrian , 2007 .

[11]  Nicholas H. Putnam,et al.  Sea Anemone Genome Reveals Ancestral Eumetazoan Gene Repertoire and Genomic Organization , 2007, Science.

[12]  D. Baulcombe,et al.  miRNAs control gene expression in the single-cell alga Chlamydomonas reinhardtii , 2007, Nature.

[13]  J. Gerhart,et al.  The theory of facilitated variation , 2007, Proceedings of the National Academy of Sciences.

[14]  R. Michod,et al.  Evolution of individuality during the transition from unicellular to multicellular life , 2007, Proceedings of the National Academy of Sciences.

[15]  Daniel W. McShea,et al.  Increasing hierarchical complexity throughout the history of life: phylogenetic tests of trend mechanisms , 2007, Paleobiology.

[16]  A. Knoll,et al.  Devonian landscape heterogeneity recorded by a giant fungus , 2007 .

[17]  David L. Valentine,et al.  Opinion: Adaptations to energy stress dictate the ecology and evolution of the Archaea , 2007, Nature Reviews Microbiology.

[18]  B Franz Lang,et al.  The origins of multicellularity: a multi-taxon genome initiative. , 2007, Trends in genetics : TIG.

[19]  D. Canfield,et al.  Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life , 2007, Science.

[20]  U. Feldt-Rasmussen,et al.  Thyroid Hormone Transport and Actions , 2007 .

[21]  A. Knoll,et al.  The Geological Succession of Primary Producers in the Oceans , 2007 .

[22]  D. Mann,et al.  The origin and evolution of the diatoms: their adaptation to a planktonic existence , 2007 .

[23]  A. Knoll,et al.  Paleobiology of the Neoproterozoic Svanbergfjellet Formation, Spitsbergen , 2006 .

[24]  J. Grotzinger,et al.  Oxidation of the Ediacaran Ocean , 2006, Nature.

[25]  Marco Stampanoni,et al.  Cellular and Subcellular Structure of Neoproterozoic Animal Embryos , 2006, Science.

[26]  William Dirks,et al.  Early evolution of animal cell signaling and adhesion genes , 2006, Proceedings of the National Academy of Sciences.

[27]  R. Michod,et al.  The evolutionary origin of an altruistic gene. , 2006, Molecular biology and evolution.

[28]  A. Knoll,et al.  Eukaryotic organisms in Proterozoic oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[29]  L. Hug,et al.  The origin and diversification of eukaryotes: problems with molecular phylogenetics and molecular clock estimation , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[30]  R. Michod,et al.  The group covariance effect and fitness trade-offs during evolutionary transitions in individuality. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[31]  Sujoy Ganguly,et al.  Flows driven by flagella of multicellular organisms enhance long-range molecular transport. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[32]  O. Leyser,et al.  Auxin Transport, but in Which Direction? , 2006, Science.

[33]  A. Nedelcu,et al.  A land plant-specific multigene family in the unicellular Mesostigma argues for its close relationship to Streptophyta. , 2006, Molecular biology and evolution.

[34]  C. Marshall Explaining the Cambrian "Explosion" of Animals , 2006 .

[35]  A. Anbar,et al.  Response to Comment on "Molybdenum Isotope Evidence for Widespread Anoxia in Mid-Proterozoic Oceans" , 2005, Science.

[36]  C. McKay,et al.  Why O2 is required by complex life on habitable planets and the concept of planetary "oxygenation time". , 2005, Astrobiology.

[37]  P. Falkowski,et al.  The co-evolution of the nitrogen, carbon and oxygen cycles in the Proterozoic ocean , 2005 .

[38]  G. Narbonne THE EDIACARA BIOTA: Neoproterozoic Origin of Animals and Their Ecosystems , 2005 .

[39]  Manuel Maldonado,et al.  Choanoflagellates, choanocytes, and animal multicellularity , 2005 .

[40]  S. Benner,et al.  Resurrecting ancestral alcohol dehydrogenases from yeast , 2005, Nature Genetics.

[41]  D. Hewitt,et al.  Reactive oxygen species and development in microbial eukaryotes. , 2005, Trends in microbiology.

[42]  J. Cairney,et al.  Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. , 2005, Mycological research.

[43]  A. Knoll,et al.  Phosphatized multicellular algae in the Neoproterozoic Doushantuo Formation, China, and the early evolution of florideophyte red algae. , 2004, American journal of botany.

[44]  C. Schlichting,et al.  Origins of differentiation via phenotypic plasticity , 2003, Evolution & development.

[45]  A. Knoll,et al.  Proterozoic Ocean Chemistry and Evolution: A Bioinorganic Bridge? , 2002, Science.

[46]  A. Knoll,et al.  MACROSCOPIC CARBONACEOUS COMPRESSIONS IN A TERMINAL PROTEROZOIC SHALE: A SYSTEMATIC REASSESSMENT OF THE MIAOHE BIOTA, SOUTH CHINA , 2002, Journal of Paleontology.

[47]  D. McShea A COMPLEXITY DRAIN ON CELLS IN THE EVOLUTION OF MULTICELLULARITY , 2002, Evolution; international journal of organic evolution.

[48]  Adrian L. Harris,et al.  Hypoxia — a key regulatory factor in tumour growth , 2002, Nature Reviews Cancer.

[49]  N. Blackstone Redox state, reactive oxygen species and adaptive growth in colonial hydroids. , 2001, The Journal of experimental biology.

[50]  S. Bonhoeffer,et al.  Cooperation and Competition in the Evolution of ATP-Producing Pathways , 2001, Science.

[51]  Andrew H. Knoll,et al.  Directionality in the history of life: diffusion from the left wall or repeated scaling of the right? , 2000, Paleobiology.

[52]  N. Blackstone Redox control and the evolution of multicellularity. , 2000, BioEssays : news and reviews in molecular, cellular and developmental biology.

[53]  J. Gray,et al.  The microfossil record of early land plants. , 2000, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[54]  A. Knoll,et al.  Calcified metazoans in thrombolite-stromatolite reefs of the terminal Proterozoic Nama Group, Namibia , 2000, Paleobiology.

[55]  N. Butterfield,et al.  Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes , 2000, Paleobiology.

[56]  J. Kirschvink,et al.  Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. , 2000, Science.

[57]  S. Jensen,et al.  A critical reappraisal of the fossil record of the bilaterian phyla , 2000, Biological reviews of the Cambridge Philosophical Society.

[58]  D. Patterson,et al.  The Diversity of Eukaryotes , 1999, The American Naturalist.

[59]  R Buick,et al.  Archean molecular fossils and the early rise of eukaryotes. , 1999, Science.

[60]  T. Taylor,et al.  The oldest fossil ascomycetes , 1999, Nature.

[61]  D. Canfield A new model for Proterozoic ocean chemistry , 1998, Nature.

[62]  Arne Ø. Mooers,et al.  Size and complexity among multicellular organisms , 1997 .

[63]  K. Niklas Morphological evolution through complex domains of fitness. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[64]  B. Runnegar,et al.  Megascopic eukaryotic algae from the 2.1-billion-year-old negaunee iron-formation, Michigan. , 1992, Science.

[65]  B. Runnegar Precambrian oxygen levels estimated from the biochemistry and physiology of early eukaryotes , 1991 .

[66]  A. Knoll,et al.  The evolution of ecological tolerance in prokaryotes , 1989, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[67]  J. Graham Ecological and Evolutionary Aspects of Integumentary Respiration: Body Size, Diffusion, and the Invertebrata , 1988 .

[68]  J. Gray,et al.  Silurian fungal remains: probable records of the Class Ascomycetes , 1985 .

[69]  T. Phillips,et al.  Evidence of non-vascular land plants from the early Silurian (Llandoverian) of Virginia, U.S.A. , 1978 .

[70]  D. Rhoads,et al.  EVOLUTIONARY AND ECOLOGIC SIGNIFICANCE OF OXYGEN‐DEFICIENT MARINE BASINS , 1971 .

[71]  R. Raff,et al.  Respiratory Mechanisms and the Metazoan Fossil Record , 1970, Nature.

[72]  A Krogh,et al.  The rate of diffusion of gases through animal tissues, with some remarks on the coefficient of invasion , 1919, The Journal of physiology.