Optimizing the Performance of Cs2AgBiBr6 based Solar Cell through Modification of Electron and Hole Transport Layers

[1]  D. Ahmed,et al.  Fluorinated carbon nanotubes: a low-cost hole transport layer for perovskite solar cells , 2023, Journal of Materials Science.

[2]  Jaya Madan,et al.  Understanding Auger recombination in perovskite solar cells. , 2023, Physical chemistry chemical physics : PCCP.

[3]  A. Trukhanov,et al.  Structure and optoelectronic properties of ferroelectric PVA-PZT nanocomposites , 2023, Optical Materials.

[4]  Jaya Madan,et al.  A short study on recently developed tandem solar cells , 2023, Materials Today: Proceedings.

[5]  Jaya Madan,et al.  An efficient all-perovskite two terminal monolithic tandem solar cell with Improved Photovoltaic Parameters: A theoretical prospect , 2023, Optik.

[6]  Ming Cheng,et al.  Advancing Lead-Free Cs2AgBiBr6 perovskite solar cells: Challenges and strategies , 2023, Solar Energy.

[7]  Jaya Madan,et al.  Perovskite-CIGS Monolithic Tandem Solar Cells with 29.7% Efficiency: A Numerical Study , 2023, Energy & Fuels.

[8]  T. Alanazi Design and Device Numerical Analysis of Lead-Free Cs2AgBiBr6 Double Perovskite Solar Cell , 2023, Crystals.

[9]  Soonil Hong,et al.  Recent Advances and Challenges toward Efficient Perovskite/Organic Integrated Solar Cells , 2022, Energies.

[10]  Md. Ferdous Rahman,et al.  Combined DFT, SCAPS-1D, and wxAMPS frameworks for design optimization of efficient Cs2BiAgI6-based perovskite solar cells with different charge transport layers , 2022, RSC advances.

[11]  Jaya Madan,et al.  Design and Simulation of 7% Efficient Lead-Free Perovskite Single Junction Solar Cell , 2022, 2022 IEEE International Conference of Electron Devices Society Kolkata Chapter (EDKCON).

[12]  Aditi Thakur,et al.  Numerical simulations of 26.11% efficient planar CH3NH3PbI3 perovskite n-i-p solar cell , 2022, Materials Today: Proceedings.

[13]  Divya Bhutani,et al.  Double lead-free perovskite solar cell for 19.9% conversion efficiency: A SCAPS-1D based simulation study , 2022, Materials Today: Proceedings.

[14]  B. M. Soucase,et al.  Design and efficiency enhancement of FTO/PC60BM/CsSn0.5Ge0.5I3/Spiro-OMeTAD/Au perovskite solar cell utilizing SCAPS-1D Simulator , 2022, Materials Research Express.

[15]  Mayeen Uddin Khandaker,et al.  Features of Galvanostatic Electrodeposition of NiFe Films with Composition Gradient: Influence of Substrate Characteristics , 2022, Nanomaterials.

[16]  Liya Zhou,et al.  Boosting the stability and efficiency of Cs2AgBiBr6 perovskite solar cells via Zn doping , 2022, Optical Materials.

[17]  M. Sui,et al.  Hydrogenated Cs2AgBiBr6 for significantly improved efficiency of lead-free inorganic double perovskite solar cell , 2022, Nature Communications.

[18]  A. Laref,et al.  Investigating the potential of lead‐free double perovskite Cs2AgBiBr6 material for solar cell applications: A theoretical study , 2022, International Journal of Energy Research.

[19]  Chu‐Chen Chueh,et al.  Efficient and stable Cs2AgBiBr6 double perovskite solar cells through in-situ surface modulation , 2022, Chemical Engineering Journal.

[20]  A. Uddin,et al.  Progress and Challenges of SnO2 Electron Transport Layer for Perovskite Solar Cells: A Critical Review , 2022, Solar RRL.

[21]  D. S. Klygach,et al.  Impact of In3+ cations on structure and electromagnetic state of M-type hexaferrites , 2021, Journal of Energy Chemistry.

[22]  Jaya Madan,et al.  Investigations aimed at producing 33% efficient perovskite–silicon tandem solar cells through device simulations , 2021, RSC advances.

[23]  A. Garg,et al.  Hole transporting layer optimization for an efficient lead-free double perovskite solar cell by numerical simulation , 2021, Optical Materials.

[24]  Junyou Yang,et al.  Band Matching Strategy for All-Inorganic Cs2AgBiBr6 Double Perovskite Solar Cells with High Photovoltage. , 2021, ACS applied materials & interfaces.

[25]  Md. Jayed Hossain,et al.  Performance Analysis of Perovskite Solar Cells Using DFT-Extracted Parameters of Metal-Doped TiO2 Electron Transport Layer , 2021 .

[26]  A. Kozlovskiy,et al.  Phase transformations in FeCo – Fe2CoO4/Co3O4-spinel nanostructures as a result of thermal annealing and their practical application , 2021, Journal of Materials Science: Materials in Electronics.

[27]  L. Matzui,et al.  Structure and magnetodielectric properties of titanium substituted barium hexaferrites , 2021 .

[28]  A. Kozlovskiy,et al.  Effect of doping of Ce4+/3+ on optical, strength and shielding properties of (0.5-x)TeO2-0.25MoO-0.25Bi2O3-xCeO2 glasses , 2021 .

[29]  T. Park,et al.  Suppressed Degradation and Enhanced Performance of CsPbI3 Perovskite Quantum Dot Solar Cells via Engineering of Electron Transport Layers. , 2021, ACS applied materials & interfaces.

[30]  B. Rech,et al.  Monolithic perovskite/silicon tandem solar cell with >29% efficiency by enhanced hole extraction , 2020, Science.

[31]  Artem Kozlovskiy,et al.  Evaluation of the Efficiency of Detection and Capture of Manganese in Aqueous Solutions of FeCeOx Nanocomposites Doped with Nb2O5 , 2020, Sensors.

[32]  A. Du,et al.  Dual‐Ion‐Diffusion Induced Degradation in Lead‐Free Cs2AgBiBr6 Double Perovskite Solar Cells , 2020, Advanced Functional Materials.

[33]  Zhengshan J. Yu,et al.  Simplified interconnection structure based on C60/SnO2-x for all-perovskite tandem solar cells , 2020, Nature Energy.

[34]  Shifat Us Sami,et al.  Numerical simulation studies of a fully inorganic Cs2AgBiBr6 perovskite solar device , 2020 .

[35]  A. Kozlovskiy,et al.  Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications , 2020, Journal of Materials Science: Materials in Electronics.

[36]  Zhengshan J. Yu,et al.  Blade-Coated Perovskites on Textured Silicon for 26%-Efficient Monolithic Perovskite/Silicon Tandem Solar Cells , 2020, Joule.

[37]  I. Kenzhina,et al.  The study of the prospects for the use of Li0.15Sr0.85TiO3 ceramics , 2020, Journal of Materials Science: Materials in Electronics.

[38]  U. Bach,et al.  Enhancement of the intrinsic light harvesting capacity of Cs2AgBiBr6 double perovskite via modification with sulphide , 2020 .

[39]  Zhiqun Lin,et al.  Lead-Free Halide Perovskite Nanocrystals: Crystal Structures, Synthesis, Stabilities, and Optical Properties. , 2020, Angewandte Chemie.

[40]  W. Ali,et al.  Simulation and Analysis of Methylammonium Lead Iodide (CH3NH3PbI3) Perovskite Solar Cell with Au Contact Using SCAPS 1D Simulator , 2019, American Journal of Optics and Photonics.

[41]  Bryan M. Wong,et al.  Indirect but Efficient: Laser-Excited Electrons Can Drive Ultrafast Polarization Switching in Ferroelectric Materials. , 2019, The journal of physical chemistry letters.

[42]  A. Kozlovskiy,et al.  Synthesis, structural, strength and corrosion properties of thin films of the type CuX (X = Bi, Mg, Ni) , 2019, Journal of Materials Science: Materials in Electronics.

[43]  N. Lupu,et al.  Correlation of crystalline and magnetic structures of barium ferrites with dual ferroic properties , 2019, Journal of Magnetism and Magnetic Materials.

[44]  A. Kozlovskiy,et al.  Optical and structural properties of AlN ceramics irradiated with heavy ions , 2019, Optical Materials.

[45]  Yang Yang,et al.  Composition Stoichiometry of Cs2AgBiBr6 Films for Highly Efficient Lead-Free Perovskite Solar Cells. , 2019, Nano letters.

[46]  S. Ghorashi,et al.  Investigation of the influence of different hole-transporting materials on the performance of perovskite solar cells , 2017 .

[47]  A. Walsh,et al.  Can Pb-Free Halide Double Perovskites Support High-Efficiency Solar Cells? , 2016, ACS energy letters.

[48]  A. Jen,et al.  Enhanced Efficiency and Stability of Inverted Perovskite Solar Cells Using Highly Crystalline SnO2 Nanocrystals as the Robust Electron‐Transporting Layer , 2016, Advanced materials.

[49]  W. Windl,et al.  Cs2AgBiX6 (X = Br, Cl): New Visible Light Absorbing, Lead-Free Halide Perovskite Semiconductors , 2016 .

[50]  A. Lindenberg,et al.  A Bismuth-Halide Double Perovskite with Long Carrier Recombination Lifetime for Photovoltaic Applications. , 2016, Journal of the American Chemical Society.

[51]  Christophe Ballif,et al.  Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance. , 2014, The journal of physical chemistry letters.

[52]  Xionggang Lu,et al.  Formability of ABX3 (X = F, Cl, Br, I) halide perovskites. , 2008, Acta crystallographica. Section B, Structural science.

[53]  A. Trukhanov,et al.  High hydrostatic pressure effect on magnetic state of anion-deficient La0.70Sr0.30MnOx perovskite manganites , 2008 .

[54]  A. Adair,et al.  Phase separation and size effects in Pr0.70Ba0.30MnO3+δ perovskite manganites , 2007, Journal of physics. Condensed matter : an Institute of Physics journal.

[55]  M. Hervieu,et al.  Magnetic and electrical properties ofLBaMn2O6−γ(L=Pr,Nd, Sm, Eu, Gd, Tb) manganites , 2002 .

[56]  Rustum Roy,et al.  The perovskite structure – a review of its role in ceramic science and technology , 2000 .

[57]  W. R. Robinson,et al.  Crystal structure of Cs2NaBiCl6 , 1972 .

[58]  Mayeen Uddin Khandaker,et al.  Fabrication of doped ferrites and exploration of their structure and magnetic behavior , 2023, Materials Advances.

[59]  Jaya Madan,et al.  Harnessing the potential of Dion-Jacobson perovskite solar cells: Insights from SCAPS simulation techniques , 2023, Journal of Alloys and Compounds.

[60]  D. Ahmed,et al.  Efficient and Hysteresis-Free Mixed-Dimensional 2D/3D Perovskite Solar Cells Using Ethyl Lactate as a Green Additive to the Perovskite Precursor Solution , 2022, Journal of Materials Chemistry C.