Random non‐crossing plane configurations: A conditioned Galton‐Watson tree approach

We study various models of random non-crossing configurations consisting of diagonals of convex polygons, and focus in particular on uniform dissections and non-crossing trees. For both these models, we prove convergence in distribution towards Aldous' Brownian triangulation of the disk. In the case of dissections, we also refine the study of the maximal vertex degree and validate a conjecture of Bernasconi, Panagiotou and Steger. Our main tool is the use of an underlying Galton-Watson tree structure. © 2014 Wiley Periodicals, Inc. Random Struct. Alg., 45, 236-260, 2014

[1]  David Aldous RECURSIVE SELF-SIMILARITY FOR RANDOM TREES, RANDOM TRIANGULATIONS AND BROWNIAN EXCURSION , 1994 .

[2]  P. Flajolet,et al.  Analytic Combinatorics: RANDOM STRUCTURES , 2009 .

[3]  Invariance principles for Galton-Watson trees conditioned on the number of leaves , 2011, 1110.2163.

[4]  P. Billingsley,et al.  Convergence of Probability Measures , 1970, The Mathematical Gazette.

[5]  Schröder’s problems and scaling limits of random trees , 2011, 1107.1760.

[6]  Philippe Flajolet,et al.  Analytic combinatorics of non-crossing configurations , 1999, Discret. Math..

[7]  D. Aldous Stochastic Analysis: The Continuum random tree II: an overview , 1991 .

[8]  Abdelkader Mokkadem,et al.  Limit of normalized quadrangulations: The Brownian map , 2006 .

[9]  Thomas Duquesne A limit theorem for the contour process of condidtioned Galton--Watson trees , 2003 .

[10]  J. L. Gall,et al.  Random trees and applications , 2005 .

[11]  Thomas Duquesne,et al.  Random Trees, Levy Processes and Spatial Branching Processes , 2002 .

[12]  D. Aldous Triangulating the Circle, at Random , 1994 .

[13]  Robert E. Tarjan,et al.  Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.

[14]  Nicholas C. Wormald,et al.  The Distribution of the Maximum Vertex Degree in Random Planar Maps , 2000, J. Comb. Theory A.

[15]  J. L. Gall,et al.  Random recursive triangulations of the disk via fragmentation theory , 2010, 1006.0792.

[16]  I. Kortchemski Random stable laminations of the disk , 2011, 1106.0271.

[17]  J. L. Gall,et al.  Random real trees , 2006, math/0605484.

[18]  Angelika Mueller,et al.  Principles Of Random Walk , 2016 .

[19]  I. Kortchemski Invariance principles for conditioned Galton-Watson trees , 2011 .

[20]  Alois Panholzer,et al.  Noncrossing trees are almost conditioned Galton–Watson trees , 2002, Random Struct. Algorithms.

[21]  T. F. Móri On random trees , 2002 .

[22]  Philippe Flajolet,et al.  Analytic Combinatorics , 2009 .

[23]  Konstantinos Panagiotou,et al.  On properties of random dissections and triangulations , 2008, SODA '08.

[24]  Nariyuki Minami On the number of vertices with a given degree in a Galton-Watson tree , 2005, Advances in Applied Probability.

[25]  Philippe Flajolet,et al.  Properties of Random Triangulations and Trees , 1999, Discret. Comput. Geom..

[26]  J. Pitman Combinatorial Stochastic Processes , 2006 .

[27]  H. Kesten Subdiffusive behavior of random walk on a random cluster , 1986 .

[28]  Douglas Rizzolo Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set , 2011, 1105.2528.

[29]  David Aldous,et al.  The Continuum Random Tree III , 1991 .

[30]  J. F. Le Gall,et al.  Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere , 2006 .