Random non‐crossing plane configurations: A conditioned Galton‐Watson tree approach
暂无分享,去创建一个
[1] David Aldous. RECURSIVE SELF-SIMILARITY FOR RANDOM TREES, RANDOM TRIANGULATIONS AND BROWNIAN EXCURSION , 1994 .
[2] P. Flajolet,et al. Analytic Combinatorics: RANDOM STRUCTURES , 2009 .
[3] Invariance principles for Galton-Watson trees conditioned on the number of leaves , 2011, 1110.2163.
[4] P. Billingsley,et al. Convergence of Probability Measures , 1970, The Mathematical Gazette.
[5] Schröder’s problems and scaling limits of random trees , 2011, 1107.1760.
[6] Philippe Flajolet,et al. Analytic combinatorics of non-crossing configurations , 1999, Discret. Math..
[7] D. Aldous. Stochastic Analysis: The Continuum random tree II: an overview , 1991 .
[8] Abdelkader Mokkadem,et al. Limit of normalized quadrangulations: The Brownian map , 2006 .
[9] Thomas Duquesne. A limit theorem for the contour process of condidtioned Galton--Watson trees , 2003 .
[10] J. L. Gall,et al. Random trees and applications , 2005 .
[11] Thomas Duquesne,et al. Random Trees, Levy Processes and Spatial Branching Processes , 2002 .
[12] D. Aldous. Triangulating the Circle, at Random , 1994 .
[13] Robert E. Tarjan,et al. Rotation distance, triangulations, and hyperbolic geometry , 1986, STOC '86.
[14] Nicholas C. Wormald,et al. The Distribution of the Maximum Vertex Degree in Random Planar Maps , 2000, J. Comb. Theory A.
[15] J. L. Gall,et al. Random recursive triangulations of the disk via fragmentation theory , 2010, 1006.0792.
[16] I. Kortchemski. Random stable laminations of the disk , 2011, 1106.0271.
[17] J. L. Gall,et al. Random real trees , 2006, math/0605484.
[18] Angelika Mueller,et al. Principles Of Random Walk , 2016 .
[19] I. Kortchemski. Invariance principles for conditioned Galton-Watson trees , 2011 .
[20] Alois Panholzer,et al. Noncrossing trees are almost conditioned Galton–Watson trees , 2002, Random Struct. Algorithms.
[21] T. F. Móri. On random trees , 2002 .
[22] Philippe Flajolet,et al. Analytic Combinatorics , 2009 .
[23] Konstantinos Panagiotou,et al. On properties of random dissections and triangulations , 2008, SODA '08.
[24] Nariyuki Minami. On the number of vertices with a given degree in a Galton-Watson tree , 2005, Advances in Applied Probability.
[25] Philippe Flajolet,et al. Properties of Random Triangulations and Trees , 1999, Discret. Comput. Geom..
[26] J. Pitman. Combinatorial Stochastic Processes , 2006 .
[27] H. Kesten. Subdiffusive behavior of random walk on a random cluster , 1986 .
[28] Douglas Rizzolo. Scaling limits of Markov branching trees and Galton-Watson trees conditioned on the number of vertices with out-degree in a given set , 2011, 1105.2528.
[29] David Aldous,et al. The Continuum Random Tree III , 1991 .
[30] J. F. Le Gall,et al. Scaling Limits of Bipartite Planar Maps are Homeomorphic to the 2-Sphere , 2006 .