Realizing Antiferromagnetic-Ferromagnetic Transition and Giant Enhancement of Magnetism in Co(Ga2-xFex)O4 Spinel Ferrites

[1]  R. Vignesh,et al.  Preparation of cerium and yttrium doped ZnO nanoparticles and tracking their structural, optical, and photocatalytic performances , 2022, Journal of Rare Earths.

[2]  Ganhong Zheng,et al.  Analysis on the microstructure and magnetic properties of MgGaFeO 4 spinel compound , 2021, Journal of the American Ceramic Society.

[3]  G. Yasin,et al.  (BaTiO 3 ) 1‐x + (Co 0.5 Ni 0.5 Nb 0.06 Fe 1.94 O 4 ) x nanocomposites: Structure, morphology, magnetic and dielectric properties , 2021 .

[4]  H. S. Mund,et al.  Investigation of the Influence of Annealing Temperature on the Structural and Magnetic Properties of MgFe2O4 , 2021, Journal of Electronic Materials.

[5]  Yongqing Ma,et al.  Observation of spin glass behavior in spinel compound CoGa2O4 , 2021, Journal of Materials Science: Materials in Electronics.

[6]  Xiansong Liu,et al.  Influence of Mg2+ replacement on the structure and magnetic properties of MgxZn1−xFe2O4 (x = 0.1–0.5) ferrites , 2021, Journal of Materials Science: Materials in Electronics.

[7]  Xiansong Liu,et al.  Observation of the Griffiths phase in the ternary nitrides Sn1−xNFe3+x , 2020 .

[8]  M. Almessiere,et al.  Customized magnetic properties of (Mn0.5Zn0.5)[EuxNdxFe2-2x]O4 nanospinel ferrites synthesized via ultrasonic irradiation approach , 2020 .

[9]  A. Farghali,et al.  Effect of pressure on the geometric, electronic structure, elastic, and optical properties of the normal spinel MgFe2O4: a first-principles study , 2020, Materials Research Express.

[10]  M. Ansari,et al.  Synthesis of Electrospun TiO2 Nanofibers and Characterization of Their Antibacterial and Antibiofilm Potential against Gram-Positive and Gram-Negative Bacteria , 2020, Antibiotics.

[11]  A. Trukhanov,et al.  Investigation of structural and physical properties of Eu3+ ions substituted Ni0.4Cu0.2Zn0.4Fe2O4 spinel ferrite nanoparticles prepared via sonochemical approach , 2020 .

[12]  G. Yasin,et al.  Role of WO3 nanoparticles in electrical and dielectric properties of BaTiO3–SrTiO3 ceramics , 2020, Journal of Materials Science: Materials in Electronics.

[13]  Muhammad Junaid Anjum,et al.  Revealing the erosion-corrosion performance of sphere-shaped morphology of nickel matrix nanocomposite strengthened with reduced graphene oxide nanoplatelets , 2020 .

[14]  Xiansong Liu,et al.  Spin-glass behavior in Co-based antiperovskite compound SnNCo3 , 2020 .

[15]  A. Baykal,et al.  AC susceptibility investigation of YBCO superconductor added by carbon nanotubes , 2020 .

[16]  H. Sözeri,et al.  Impact of La3+ and Y3+ ion substitutions on structural, magnetic and microwave properties of Ni0.3Cu0.3Zn0.4Fe2O4 nanospinel ferrites synthesized via sonochemical route , 2019, RSC advances.

[17]  A. Baykal,et al.  Effect of dysprosium substitution on magnetic and structural properties of NiFe2O4 nanoparticles , 2019, Journal of Rare Earths.

[18]  M. Mumtaz,et al.  Study of tungsten oxide effect on the performance of BaTiO3 ceramics , 2019, Journal of Materials Science: Materials in Electronics.

[19]  M. Nawaz,et al.  Frequency and dc bias voltage dependent dielectric properties and electrical conductivity of BaTiO3SrTiO3/(SiO2)x nanocomposites , 2019, Ceramics International.

[20]  A. Trukhanov,et al.  Magnetic Attributes of NiFe2O4 Nanoparticles: Influence of Dysprosium Ions (Dy3+) Substitution , 2019, Nanomaterials.

[21]  Xiansong Liu,et al.  Characterizations of magnetic transition behavior and electromagnetic properties of Co-Ti co-substituted SrM-based hexaferrites SrCo Ti Fe12-2O19 compounds , 2019, Journal of Alloys and Compounds.

[22]  M. Mumtaz,et al.  Improvement of flux pinning ability by tungsten oxide nanoparticles added in YBa2Cu3Oy superconductor , 2019, Ceramics International.

[23]  A. Baykal,et al.  Effect of bimetallic (Ca, Mg) substitution on magneto-optical properties of NiFe2O4 nanoparticles , 2019, Ceramics International.

[24]  A. Baykal,et al.  Calcination effect on the magneto-optical properties of vanadium substituted NiFe2O4 nanoferrites , 2019, Journal of Materials Science: Materials in Electronics.

[25]  T. Suetsuna,et al.  Soft magnetic composite containing magnetic flakes with in-plane uniaxial magnetic anisotropy , 2019, Journal of Magnetism and Magnetic Materials.

[26]  Zhi Wang,et al.  Structural, elastic, thermal and soft magnetic properties of Ni-Zn-Li ferrites , 2019, Journal of Alloys and Compounds.

[27]  M. Almessiere,et al.  Microstructural and magnetic investigation of vanadium-substituted Sr-nanohexaferrite , 2019, Journal of Magnetism and Magnetic Materials.

[28]  A. Baykal,et al.  Morphology and magnetic traits of strontium nanohexaferrites: Effects of manganese/yttrium co-substitution , 2019, Journal of Rare Earths.

[29]  A. Sarwar,et al.  Structure and Mössbauer spectroscopy studies of Ni0.5Zn0.5Nd Fe2-O4 (0.00 ≤ x ≤ 0.10) ferrites , 2019, Materials Chemistry and Physics.

[30]  M. Nawaz,et al.  Structural, magnetic, optical properties and cation distribution of nanosized Ni0.3Cu0.3Zn0.4TmxFe2-xO4 (0.0 ≤ x ≤ 0.10) spinel ferrites synthesized by ultrasound irradiation. , 2019, Ultrasonics sonochemistry.

[31]  Zhi Wang,et al.  Structure and magnetic properties correlated with cation distribution of Ni0.5-Mo Zn0.5Fe2O4 ferrites prepared by sol-gel auto-combustion method , 2018, Ceramics International.

[32]  Carlos Andrés Palacio Gómez,et al.  Structural parameters and cation distributions in solid state synthesized Ni-Zn ferrites , 2018, Materials Science and Engineering: B.

[33]  V. Kumaran,et al.  Application of Ni-Zn ferrite powders with polydisperse spherical particles in magnetorheological fluids , 2018, Powder Technology.

[34]  T. A. Taha,et al.  Green synthesis, structural, magnetic, and dielectric characterization of NiZnFe2O4/C nanocomposite , 2018, Journal of Materials Science: Materials in Electronics.

[35]  Le-Zhong Li,et al.  Structural and magnetic properties of Co-substituted NiCu ferrite nanopowders , 2017 .

[36]  Qiang Wu,et al.  Optical properties and magnetic properties of antisite-disordered Ni1–xCoxCr2O4 spinels , 2017 .

[37]  S. Jha,et al.  Structural and magnetic properties of nanocrystalline NiZn ferrites: In the context of cationic distribution , 2017 .

[38]  M. Oumezzine,et al.  Critical behavior of Zn0.6−xNixCu0.4Fe2O4 ferrite nanoparticles , 2016 .

[39]  M. Ben Salem,et al.  Excess Conductivity Study in Nano-CoFe2O4-Added YBa2Cu3O7−d and Y3Ba5Cu8O18±x Superconductors , 2015 .

[40]  Y. Sun,et al.  Exchange bias induced after zero‐field cooling in antiperovskite compounds Ga1–xNMn3+x , 2015 .

[41]  L. Bessais,et al.  SiO2 nanoparticles addition effect on microstructure and pinning properties in YBa2Cu3Oy , 2014 .

[42]  B. Lee,et al.  Structural and Magnetic Properties of Ni0.6Zn0.4Fe2O4Ferrite Prepared by Solid State Reaction and Sol-gel , 2014 .

[43]  A. Ghasemi,et al.  Structural and magnetic evaluation of substituted NiZnFe2O4 particles synthesized by conventional sol–gel method , 2014 .

[44]  L. Bessais,et al.  Superconducting properties of polycrystalline YBa2Cu3O7 – d prepared by sintering of ball-milled precursor powder , 2014 .

[45]  J. Singh,et al.  Structural, optical and magnetic studies of Ce doped NiFe2O4 nanoparticles , 2013 .

[46]  Wenliang Gao,et al.  Boric acid flux synthesis, structure and magnetic property of MB12O14(OH)10 (M=Mn, Fe, Zn) , 2013 .

[47]  Xing-hua Zhu,et al.  Structure and static magnetic properties of Zr-substituted NiZn ferrite thin films synthesized by sol–gel process , 2012 .

[48]  D. H. Ji,et al.  Quantum-mechanical method for estimating ion distributions in spinel ferrites , 2011 .

[49]  A. Agarwal,et al.  Effect of magnesium substitution on dielectric and magnetic properties of Ni-Zn ferrite , 2011 .

[50]  Z. R. Yang,et al.  Observation of spin-glass behavior in antiperovskite compound SnCFe3 , 2010 .

[51]  M. Varma,et al.  Magnetic properties of CoFe2O4 synthesized by solid state, citrate precursor and polymerized complex methods: A comparative study , 2008 .

[52]  V. Rybakov,et al.  Preparation and Structure of Ga2 – xScxO3 (0.42 ≤ x ≤ 0.52) , 2004 .

[53]  M. Misra,et al.  Magnetic, Mössbauer and electrical properties of Ti-substituted Ni0·3Zn0·7Fe2O4 , 1985 .

[54]  A. Das,et al.  Lattice parameter variation and magnetization studies on titanium‐, zirconium‐, and tin‐substituted nickel‐zinc ferrites , 1985 .

[55]  A. Stephenson On the Curie points and Weiss molecular field coefficients of ferrimagnetic spinels , 1973 .

[56]  R. Waldron Infrared Spectra of Ferrites , 1955 .