Computing all power integral bases in orders of totally real cyclic sextic number fields

An algorithm is given for determining all power integral bases in orders of totally real cyclic sextic number fields. The orders considered are in most cases the maximal orders of the fields. The corresponding index form equation is reduced to a relative Thue equation of degree 3 over the quadratic subfield and to some inhomogeneous Thue equations of degree 3 over the rationals. At the end of the paper, numerical examples are given.

[1]  M. Pohst Computational Algebraic Number Theory , 1993 .

[2]  Michael Pohst,et al.  Algorithmic algebraic number theory , 1989, Encyclopedia of mathematics and its applications.

[3]  B. D. Weger,et al.  Algorithms for diophantine equations , 1989 .

[4]  Kálmán Győry,et al.  Sur les polynômes à coefficients entiers et de discriminant donné. III. , 2022, Publicationes mathematicae (Debrecen).

[5]  A. Pethö,et al.  On the resolution of index form equations , 1991, ISSAC '91.

[6]  A. Pethö,et al.  On the Resolution of Index Form Equations in Biquadratic Number-Fields: III. The Bicyclic Biquadratic Case , 1995 .

[7]  W. J. Ellison Recipes for Solving Diophantine Problems by Baker's Method , 1971 .

[8]  Jacques Martinet,et al.  The computation of sextic fields with a quadratic subfield , 1990 .

[9]  Jan-Hendrik Evertse,et al.  New Advances in Transcendence Theory: S -unit equations and their applications , 1988 .

[10]  D. B. Meronk,et al.  Constants for lower bounds for linear forms in the logarithms of algebraic numbers II. The homogeneous rational case , 1990 .

[11]  B. D. Weger,et al.  On the practical solution of the Thue-Mahler equation , 1991 .

[12]  István Gaál,et al.  On the Resolution of Index Form Equations in Dihedral Quartic Number Fields , 1994, Exp. Math..

[13]  Sirpa Mäki,et al.  The determination of units in real cyclic sextic fields , 1980 .

[14]  István Gaál,et al.  On the resolution of index form equations in biquadratic number fields, I , 1991 .

[15]  István Gaál,et al.  On the resolution of index form equations , 1991, ISSAC '91.

[16]  V. Sprindžuk Representation of numbers by the norm forms with two dominating variables , 1974 .

[17]  I. Gaál On the resolution of inhomogeneous norm form equations in two dominating variables , 1988 .

[18]  I. Gaál,et al.  Computing all power integral bases of cubic fields , 1989 .

[19]  M. Pohst,et al.  Simultaneous Representation of Integers by a Pair of Ternary Quadratic Forms—With an Application to Index Form Equations in Quartic Number Fields , 1996 .

[20]  H. Davenport,et al.  THE EQUATIONS 3x2−2 = y2 AND 8x2−7 = z2 , 1969 .

[21]  Michael E. Pohst,et al.  A procedure for determining algebraic integers of given norm , 1983, EUROCAL.

[22]  Michel Olivier Corps sextiques contenant un corps quadratique (II) , 1990 .

[23]  E. Wright,et al.  An Introduction to the Theory of Numbers , 1939 .

[24]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[25]  I. Niven,et al.  An introduction to the theory of numbers , 1961 .

[26]  De Weger,et al.  Corrections to "How to explicitly solve a Thue-Mahler equation'' , 1993 .

[27]  Veikko Ennola,et al.  On real cyclic sextic fields , 1985 .