Beyond a Hartree–Fock description of crystalline solids: the case of lithium hydride

It is shown that a local MP2 approach can be conveniently adopted as a first step towards the post-Hartree–Fock description of crystalline solids. The relation of a new periodic MP2 code (CRYSCOR) to a classical Hartree–Fock program (CRYSTAL) is outlined. As an illustration, the case of LiH, a prototypical ionic crystal, is treated in some detail by analyzing the effect of the perturbative correction on equilibrium geometry, lattice energy and electron distribution (X-ray structure factors, directional Compton profiles), with reference to experimental data.

[1]  Martin Head-Gordon,et al.  Scaled opposite-spin second order Møller-Plesset correlation energy: an economical electronic structure method. , 2004, The Journal of chemical physics.

[2]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[3]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[4]  P. Pattison,et al.  A position space analysis of the compton profile of LiH , 1978 .

[5]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[6]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[7]  R Dovesi,et al.  Local-MP2 electron correlation method for nonconducting crystals. , 2005, The Journal of chemical physics.

[8]  Cesare Pisani,et al.  Symmetry-adapted Localized Wannier Functions Suitable for Periodic Local Correlation Methods , 2006 .

[9]  W. Cochran,et al.  An x-ray and neutron diffraction analysis of lithium hydride , 1962 .

[10]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[11]  L. Bellaiche,et al.  All‐electron calculations with plane waves in solid lithium hydride , 1997 .

[12]  A. Harker,et al.  Comparison of quasi-Hartree-Fock wave-functions for lithium hydride , 1992 .

[13]  A. Islam Lighter Alkali Hydride and Deruteride. Electronic Properties of Pure Solids , 1993 .

[14]  G. DiLabio,et al.  Structure and binding energies in van der Waals dimers: Comparison between density functional theory and correlated ab initio methods , 2006 .

[15]  Peter Pulay,et al.  An efficient reformulation of the closed‐shell self‐consistent electron pair theory , 1984 .

[16]  G. Loupias,et al.  The refinement of anisotropic Compton profiles and of momentum densities , 1995 .

[17]  W. Adams,et al.  On the Solution of the Hartree‐Fock Equation in Terms of Localized Orbitals , 1961 .

[18]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T) , 2000 .

[19]  Roland Lindh,et al.  Integral-direct electron correlation methods , 1999 .

[20]  Hamel,et al.  Equation of state of lithium deuteride from neutron diffraction under high pressure. , 1992, Physical review. B, Condensed matter.

[21]  R. Orlando,et al.  Ab Initio Quantum Simulation in Solid State Chemistry , 2005 .

[22]  S. Grimme Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies , 2003 .

[23]  Cesare Pisani,et al.  On the Prospective Use of the One-Electron Density Matrix as a Test of the Quality of Post-Hartree–Fock Schemes for Crystals , 2006 .

[24]  Pressure-induced simultaneous metal-insulator and structural-phase transitions in LiH: A quasiparticle study , 2003, cond-mat/0302290.

[25]  Frederick R. Manby,et al.  Linear scaling local coupled cluster theory with density fitting. Part I: 4-external integrals , 2003 .

[26]  Cesare Pisani,et al.  Quantum-Mechanical Ab-initio Calculation of the Properties of Crystalline Materials , 1996 .

[27]  S. Baroni,et al.  The phonon spectra of LiH and LiD from density-functional perturbation theory , 1996 .

[28]  Roberto Dovesi,et al.  Hartree-Fock study of lithium hydride with the use of a polarizable basis set , 1984 .

[29]  F. Murnaghan The Compressibility of Media under Extreme Pressures. , 1944, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. V. Gritton,et al.  Properties of lithium hydride—IV: F-center formation at low temperatures☆ , 1962 .

[31]  R. Dovesi,et al.  A general method to obtain well localized Wannier functions for composite energy bands in linear combination of atomic orbital periodic calculations , 2001 .

[32]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[33]  J. Vidal,et al.  Accurate Debye–Waller factors of 7LiH and 7LiD by neutron diffraction at three temperatures , 1986 .

[34]  Frederick R. Manby,et al.  Fast linear scaling second-order Møller-Plesset perturbation theory (MP2) using local and density fitting approximations , 2003 .

[35]  Peter Pulay,et al.  Comparison of the boys and Pipek–Mezey localizations in the local correlation approach and automatic virtual basis selection , 1993, J. Comput. Chem..

[36]  W. Reed Compton profile of LiH , 1978 .

[37]  S. F. Boys,et al.  The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors , 1970 .

[38]  D. L. Klein,et al.  Unrestricted Hartree-Fock approach to cluster calculations. II. Interaction of cluster and environment , 1978 .

[39]  T. Gilbert Multiconfiguration Self-Consistent-Field Theory for Localized Orbitals. I. The Orbital Equations , 1972 .