<jats:p>We prove that the border rank of the Kronecker square of the little Coppersmith–Winograd tensor <jats:inline-formula><jats:alternatives><jats:tex-math>$$T_{cw,q}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>T</mml:mi>
<mml:mrow>
<mml:mi>c</mml:mi>
<mml:mi>w</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> is the square of its border rank for <jats:inline-formula><jats:alternatives><jats:tex-math>$$q > 2$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mo>></mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> and that the border rank of its Kronecker cube is the cube of its border rank for <jats:inline-formula><jats:alternatives><jats:tex-math>$$q > 4$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mo>></mml:mo>
<mml:mn>4</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>. This answers questions raised implicitly by Coppersmith & Winograd (1990, §11)
and explicitly by Bläser (2013, Problem 9.8) and rules out the possibility of proving new upper bounds on the exponent of matrix multiplication using the square or cube of a little Coppersmith–Winograd tensor in this range.</jats:p><jats:p>In the positive direction, we enlarge the list of explicit tensors potentially useful for Strassen's laser method, introducing a skew-symmetric version of the Coppersmith–Winograd tensor, <jats:inline-formula><jats:alternatives><jats:tex-math>$$T_{skewcw,q}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>T</mml:mi>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mi>k</mml:mi>
<mml:mi>e</mml:mi>
<mml:mi>w</mml:mi>
<mml:mi>c</mml:mi>
<mml:mi>w</mml:mi>
<mml:mo>,</mml:mo>
<mml:mi>q</mml:mi>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>. For <jats:inline-formula><jats:alternatives><jats:tex-math>$$q = 2$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mi>q</mml:mi>
<mml:mo>=</mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>, the Kronecker square of this tensor coincides with the <jats:inline-formula><jats:alternatives><jats:tex-math>$$3\times 3$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:mn>3</mml:mn>
<mml:mo>×</mml:mo>
<mml:mn>3</mml:mn>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula> determinant polynomial, <jats:inline-formula><jats:alternatives><jats:tex-math>$$\det_{3} \in \mathbb{C}^{9} \otimes \mathbb{C}^{9} \otimes \mathbb{C}^{9}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msub>
<mml:mo>det</mml:mo>
<mml:mn>3</mml:mn>
</mml:msub>
<mml:mo>∈</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mn>9</mml:mn>
</mml:msup>
<mml:mo>⊗</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mn>9</mml:mn>
</mml:msup>
<mml:mo>⊗</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mn>9</mml:mn>
</mml:msup>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>, regarded as a tensor. We show that this tensor could potentially be used to show that the exponent of matrix multiplication is two.</jats:p><jats:p>We determine new upper bounds for the (Waring) rank and the (Waring) border rank of <jats:inline-formula><jats:alternatives><jats:tex-math>$$\det_3$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mo>det</mml:mo>
<mml:mn>3</mml:mn>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula>, exhibiting a strict submultiplicative behaviour for <jats:inline-formula><jats:alternatives><jats:tex-math>$$T_{skewcw,2}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:msub>
<mml:mi>T</mml:mi>
<mml:mrow>
<mml:mi>s</mml:mi>
<mml:mi>k</mml:mi>
<mml:mi>e</mml:mi>
<mml:mi>w</mml:mi>
<mml:mi>c</mml:mi>
<mml:mi>w</mml:mi>
<mml:mo>,</mml:mo>
<mml:mn>2</mml:mn>
</mml:mrow>
</mml:msub>
</mml:math></jats:alternatives></jats:inline-formula> which is promising for the laser method.</jats:p><jats:p>We establish general results regarding border ranks of Kronecker powers of tensors, and make a detailed study of Kronecker squares of tensors in <jats:inline-formula><jats:alternatives><jats:tex-math>$$\mathbb{C}^{3} \otimes \mathbb{C}^{3} \otimes \mathbb{C}^{3}$$</jats:tex-math><mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML">
<mml:mrow>
<mml:msup>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mn>3</mml:mn>
</mml:msup>
<mml:mo>⊗</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mn>3</mml:mn>
</mml:msup>
<mml:mo>⊗</mml:mo>
<mml:msup>
<mml:mrow>
<mml:mi>C</mml:mi>
</mml:mrow>
<mml:mn>3</mml:mn>
</mml:msup>
</mml:mrow>
</mml:math></jats:alternatives></jats:inline-formula>.</jats:p>
[1]
J. Landsberg.
Tensors: Geometry and Applications
,
2011
.
[2]
Yao Wang,et al.
Towards a geometric approach to Strassen’s asymptotic rank conjecture
,
2018
.
[3]
Markus Bläser,et al.
On Degeneration of Tensors and Algebras
,
2016,
MFCS.
[4]
W. Fulton.
Young Tableaux: With Applications to Representation Theory and Geometry
,
1996
.
[5]
Z. Teitler,et al.
An improved upper bound for the Waring rank of the determinant
,
2020,
Journal of Commutative Algebra.
[6]
Matthias Christandl,et al.
Barriers for fast matrix multiplication from irreversibility
,
2018,
CCC.
[7]
Matthias Christandl,et al.
Border Rank Is Not Multiplicative under the Tensor Product
,
2018,
SIAM J. Appl. Algebra Geom..
[8]
J. Landsberg,et al.
Equations for secant varieties of Veronese and other varieties
,
2011,
1111.4567.
[9]
N. Ilten,et al.
Product Ranks of the 3 × 3 Determinant and Permanent
,
2015,
Canadian Mathematical Bulletin.
[10]
J. M. Landsberg,et al.
New Lower Bounds for the Border Rank of Matrix Multiplication
,
2011,
Theory Comput..
[11]
A. J. Stothers.
On the complexity of matrix multiplication
,
2010
.
[12]
Josh Alman,et al.
A Refined Laser Method and Faster Matrix Multiplication
,
2020,
SODA.
[13]
François Le Gall,et al.
Powers of tensors and fast matrix multiplication
,
2014,
ISSAC.
[14]
Dario Bini.
Relations between exact and approximate bilinear algorithms. Applications
,
1980
.
[15]
Michael Clausen,et al.
Algebraic complexity theory
,
1997,
Grundlehren der mathematischen Wissenschaften.
[16]
Andris Ambainis,et al.
Fast Matrix Multiplication: Limitations of the Coppersmith-Winograd Method
,
2014,
STOC.
[17]
Joe Harris,et al.
Representation Theory: A First Course
,
1991
.
[18]
V. Strassen.
Relative bilinear complexity and matrix multiplication.
,
1987
.
[19]
Arnold Schönhage,et al.
Partial and Total Matrix Multiplication
,
1981,
SIAM J. Comput..
[20]
László Lovász,et al.
Factoring polynomials with rational coefficients
,
1982
.
[21]
Matthias Christandl,et al.
On the partially symmetric rank of tensor products of $W$-states and other symmetric tensors
,
2018,
Rendiconti Lincei - Matematica e Applicazioni.
[22]
V. Strassen.
Algebra and Complexity
,
1994
.
[23]
Christopher Umans,et al.
A group-theoretic approach to fast matrix multiplication
,
2003,
44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..
[24]
Josh Alman,et al.
Further Limitations of the Known Approaches for Matrix Multiplication
,
2017,
ITCS.
[25]
J. M. Landsberg,et al.
Geometry and Complexity Theory
,
2017
.
[26]
V. Strassen.
Rank and optimal computation of generic tensors
,
1983
.
[27]
Arun Ram,et al.
Book Review: Young tableaux: With applications to representation theory and geometry
,
1999
.
[28]
Harm Derksen,et al.
On non-commutative rank and tensor rank
,
2016,
1606.06701.
[29]
Grazia Lotti,et al.
Approximate Solutions for the Bilinear Form Computational Problem
,
1980,
SIAM J. Comput..
[30]
Greta Panova,et al.
Geometric complexity theory and matrix powering
,
2016,
Differential Geometry and its Applications.
[31]
Josh Alman,et al.
Limits on the Universal method for matrix multiplication
,
2018,
CCC.
[32]
Virginia Vassilevska Williams,et al.
Multiplying matrices faster than coppersmith-winograd
,
2012,
STOC '12.
[33]
Josh Alman,et al.
Limits on All Known (and Some Unknown) Approaches to Matrix Multiplication
,
2018,
2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
[34]
Matthias Christandl,et al.
Tensor rank is not multiplicative under the tensor product
,
2017,
ArXiv.
[35]
Harm Derksen,et al.
On the Nuclear Norm and the Singular Value Decomposition of Tensors
,
2013,
Foundations of Computational Mathematics.
[36]
Avi Wigderson,et al.
Barriers for Rank Methods in Arithmetic Complexity
,
2017,
Electron. Colloquium Comput. Complex..
[37]
Don Coppersmith,et al.
Matrix multiplication via arithmetic progressions
,
1987,
STOC.
[38]
V. Strassen.
The asymptotic spectrum of tensors.
,
1988
.
[39]
V. Strassen,et al.
Degeneration and complexity of bilinear maps: Some asymptotic spectra.
,
1991
.
[40]
V. Strassen.
Gaussian elimination is not optimal
,
1969
.
[41]
Ketan Mulmuley,et al.
Geometric Complexity Theory II: Towards Explicit Obstructions for Embeddings among Class Varieties
,
2006,
SIAM J. Comput..