Modeling of dense injection-seeded Ni-like Krypton plasma amplifiers

One promising way to reach ultra-short soft X-ray lasers is to guide an intense infrared pulse through a plasma channel generated in a high pressure gas. However, in such a case, strong non-linear effects, as overionizationinduced refraction and self-focusing, hinder the propagation of the laser beam and thus the creation of the lasing ion and the population inversion. Using a particle-in-cell (PIC) code and a ray-tracing model, we demonstrate that a stable self-regulation mechanism between self-focusing and overionization appears, which enables guiding the infrared beam over several milimetres, well beyond the saturation length for amplification of the soft X-ray laser.

[1]  F. Tissandier,et al.  Caractérisation spatio-temporelle d'une chaîne laser à 32. 8 nm par plasma laser et perspectives vers une source ultrabrève et intense , 2011 .

[2]  Ernst E. Fill Ray trajectories in line-focused laser plasmas , 1997 .

[3]  Stefan Eisebitt,et al.  Coherent imaging of biological samples with femtosecond pulses at the free-electron laser FLASH , 2010 .

[4]  Antoine Rousse,et al.  Three-dimensional Maxwell-Bloch calculation of the temporal profile of a seeded soft x-ray laser pulse , 2012 .

[5]  Jorge J. Rocca,et al.  Gain dynamics in a soft-X-ray laser amplifier perturbed by a strong injected X-ray field , 2014 .

[6]  C. Durfee,et al.  Light pipe for high intensity laser pulses. , 1993, Physical review letters.

[7]  Stéphane Sebban,et al.  Producing ultrashort, ultraintense plasma-based soft-x-ray laser pulses by high-harmonic seeding , 2010 .

[8]  M. Pittman,et al.  A proposal for multi-tens of GW fully coherent femtosecond soft X-ray lasers , 2012, Nature Photonics.

[9]  Stephane Sebban,et al.  Soft x-ray plasma-based seeded multistage amplification chain. , 2012, Optics letters.

[10]  N. H. Burnett,et al.  Refraction effects associated with multiphoton ionization and ultrashort-pulse laser propagation in plasma waveguides. , 1991, Optics letters.

[11]  Yong Wang,et al.  Phase-coherent, injection-seeded, table-top soft-X-ray lasers at 18.9 nm and 13.9 nm , 2008 .

[12]  Thomas M. Antonsen,et al.  Kinetic modeling of intense, short laser pulses propagating in tenuous plasmas , 1997 .

[13]  Stéphane Sebban,et al.  Comparison of natural and forced amplification regimes in plasma-based soft-x-ray lasers seeded by high-order harmonics , 2011 .

[14]  K. Nakamura,et al.  GeV electron beams from a centimetre-scale accelerator , 2006 .

[15]  Annie Klisnick,et al.  Two-dimensional Maxwell-Bloch simulation of quasi-π-pulse amplification in a seeded XUV laser , 2013 .

[16]  Brigitte Cros,et al.  Numerical modeling of multi-GeV laser wakefield electron acceleration inside a dielectric capillary tube , 2013 .

[17]  Keith A. Nugent,et al.  Coherent lensless X-ray imaging , 2010 .

[18]  Chai-Yu Lin,et al.  Optical-field-ionization collisional-excitation x-ray lasers with an optically preformed plasma waveguide , 2007 .

[19]  Tomas Mocek,et al.  Characterization of the collisionally pumped optical-field-ionized soft-x-ray laser at 41.8 nm driven in capillary tubes , 2006 .

[20]  Jorge J. Rocca,et al.  Measurement of 1-ps soft-x-ray laser pulses from an injection-seeded plasma amplifier , 2009 .

[21]  T. Mocek,et al.  A high-intensity highly coherent soft X-ray femtosecond laser seeded by a high harmonic beam , 2004, Nature.

[22]  Annie Klisnick,et al.  Maxwell-Bloch modeling of x-ray-laser-signal buildup in single- and double-pass configurations , 2000 .

[23]  Hsu-hsin Chu,et al.  Efficient generation of extended plasma waveguides with the axicon ignitor-heater scheme , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[24]  P. Zeitoun,et al.  Wavefront improvement in an injection-seeded soft x-ray laser based on a solid-target plasma amplifier. , 2013, Optics letters.