Disposable roll-to-roll hot embossed electrophoresis chip for detection of antibiotic resistance gene mecA in bacteria.

We present a high-throughput roll-to-roll (R2R) manufacturing process for foil-based polymethyl methacrylate (PMMA) chips of excellent optical quality. These disposable, R2R hot embossed microfluidic chips are used for the identification of the antibiotic resistance gene mecA in Staphylococcus epidermidis. R2R hot embossing is an emerging manufacturing technology for polymer microfluidic devices. It is based on continuous feeding of a thermoplastic foil through a pressurized area between a heated embossing cylinder and a blank counter cylinder. Although mass fabrication of foil-based microfluidic chips and their use for biological applications were foreseen already some years ago, no such studies have been published previously.

[1]  Sum Huan Ng,et al.  Micro-fabrication of polymeric devices using hot roller embossing , 2009 .

[2]  Tomi Haatainen,et al.  Continuous Double-Sided Roll-to-Roll Imprinting of Polymer Film , 2008 .

[3]  Shu-Hui Chen,et al.  Analysis of DNA fragments by microchip electrophoresis fabricated on poly(methyl methacrylate) substrates using a wire‐imprinting method , 2000, Electrophoresis.

[4]  C Gärtner,et al.  Polymer microfabrication methods for microfluidic analytical applications , 2000, Electrophoresis.

[5]  Roland Zengerle,et al.  Lab-on-a-Foil: microfluidics on thin and flexible films. , 2010, Lab on a chip.

[6]  A Paulus,et al.  Rapid, parallel separations of d1S80 alleles in a plastic microchannel chip. , 2000, Journal of chromatography. A.

[7]  K. Young,et al.  Plastic microchip electrophoresis for analysis of PCR products of hepatitis C virus. , 1999, Clinical chemistry.

[8]  Karlheinz Bock,et al.  Roll-to-roll hot embossing of microstructures , 2010, 2010 Symposium on Design Test Integration and Packaging of MEMS/MOEMS (DTIP).

[9]  Bingcheng Lin,et al.  Analysis of multiplex PCR fragments with PMMA microchip , 2006, Talanta.

[10]  Anders Kristensen,et al.  Roll-to-roll fabricated lab-on-a-chip devices , 2011 .

[11]  M. Heckele,et al.  Review on micro molding of thermoplastic polymers , 2004 .

[12]  R. Mathies,et al.  Radial capillary array electrophoresis microplate and scanner for high-performance nucleic acid analysis. , 1999, Analytical chemistry.

[13]  S. Soper,et al.  Surface modification of poly(methyl methacrylate) microfluidic devices for high‐resolution separations of single‐stranded DNA , 2007, Electrophoresis.

[14]  Sum Huan Ng,et al.  Hot roller embossing for microfluidics: process and challenges , 2009 .

[15]  Yang-Wei Lin,et al.  Analysis of double-stranded DNA by microchip capillary electrophoresis using polymer solutions containing gold nanoparticles. , 2003, Journal of chromatography. A.

[16]  Gwo-Bin Lee,et al.  Plastic microchip electrophoresis for genetic screening: The analysis of polymerase chain reactions products of fragile X (CGG)n alleles , 2001, Electrophoresis.

[17]  Holger Becker,et al.  Polymer microfabrication technologies for microfluidic systems , 2008, Analytical and bioanalytical chemistry.

[18]  Th. Schaller,et al.  Low-cost thermoforming of micro fluidic analysis chips , 2002 .

[19]  Kristen L. Helton,et al.  Microfluidic Overview of Global Health Issues Microfluidic Diagnostic Technologies for Global Public Health , 2006 .

[20]  Sum Huan Ng,et al.  Investigation of hot roller embossing for microfluidic devices , 2009 .

[21]  Igor L. Medintz,et al.  High-pressure gel loader for capillary array electrophoresis microchannel plates. , 2001, BioTechniques.

[22]  W. Tseng,et al.  DNA analysis on microfabricated electrophoretic devices with bubble cells , 2002, Electrophoresis.

[23]  W. Xiaodong,et al.  Microfluidic chip made of COP (cyclo-olefin polymer) and comparion to PMMA (polymethylmethacrylate) microfluidic chip , 2008 .

[24]  Alimuddin Zumla,et al.  Accurate and rapid identification of bacterial species from positive blood cultures with a DNA-based microarray platform: an observational study , 2010, The Lancet.

[25]  Richard A Mathies,et al.  High throughput DNA sequencing with a microfabricated 96-lane capillary array electrophoresis bioprocessor , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[26]  Z. Fang,et al.  Static adsorptive coating of poly(methyl methacrylate) microfluidic chips for extended usage in DNA separations , 2005, Electrophoresis.

[27]  R. Mathies,et al.  Integrated microfluidic systems for high-performance genetic analysis. , 2009, Trends in biotechnology.

[28]  B. Lin,et al.  Modification of a poly(methyl methacrylate) injection-molded microchip and its use for high performance analysis of DNA. , 2005, Journal of separation science.

[29]  F. Bauerfeld,et al.  Investigations on reel-to-reel hot embossing , 2010 .

[30]  S. Clark,et al.  DNA sequencing using a four‐color confocal fluorescence capillary array scanner , 1996, Electrophoresis.

[31]  T. Boone,et al.  Preconcentration and separation of double‐stranded DNA fragments by electrophoresis in plastic microfluidic devices , 2003, Electrophoresis.

[32]  Martin Richter,et al.  Microfluidics on foil: State of the art and new developments , 2008 .

[33]  G. Whitesides The origins and the future of microfluidics , 2006, Nature.

[34]  R. Mathies,et al.  Ultra‐high throughput rotary capillary array electrophoresis scanner for fluorescent DNA sequencing and analysis , 1999, Electrophoresis.

[35]  Gang Chen,et al.  Fabrication, modification, and application of poly(methyl methacrylate) microfluidic chips , 2008, Electrophoresis.

[36]  M. Otto Staphylococcus epidermidis — the 'accidental' pathogen , 2009, Nature Reviews Microbiology.

[37]  H. Piiparinen,et al.  Rapid identification of bacterial pathogens using a PCR- and microarray-based assay , 2009, BMC Microbiology.

[38]  C. Khan-Malek,et al.  Hot roll embossing in thermoplastic foils using dry-etched silicon stamp and multiple passes , 2011 .