Multi-localized time-symmetric initial data for the Einstein vacuum equations
暂无分享,去创建一个
[1] Yuchen Mao,et al. Localized initial data for Einstein equations , 2022, 2210.09437.
[2] Stefanos Aretakis,et al. The characteristic gluing problem for the Einstein equations and applications , 2021, 2107.02441.
[3] Federico Pasqualotto,et al. Global Stability for Nonlinear Wave Equations with Multi-Localized Initial Data , 2019, Annals of PDE.
[4] Iva Stavrov Allen,et al. Geometrostatic Manifolds of Small ADM Mass , 2017, Communications on Pure and Applied Mathematics.
[5] Lan-Hsuan Huang,et al. Localized deformation for initial data sets with the dominant energy condition , 2016, Calculus of Variations and Partial Differential Equations.
[6] R. Schoen,et al. Localizing solutions of the Einstein constraint equations , 2014, 1407.4766.
[7] M. Eichmair,et al. Deformation of scalar curvature and volume , 2012, 1211.6168.
[8] P. Yu,et al. Construction of Cauchy Data of Vacuum Einstein field equations Evolving to Black Holes , 2012, 1207.3164.
[9] P. Chruściel,et al. Construction of N-Body Initial Data Sets in General Relativity , 2010, 1004.1355.
[10] J. Isenberg,et al. Construction of N-body time-symmetric initial data sets in general relativity , 2009, 0909.1101.
[11] Justin Corvino. On the Existence and Stability of the Penrose Compactification , 2007 .
[12] Justin Corvino. A note on asymptotically flat metrics on ℝ³ which are scalar-flat and admit minimal spheres , 2005 .
[13] R. Bartnik,et al. The Constraint equations , 2004, gr-qc/0405092.
[14] P. Miao. Asymptotically flat and scalar flat metrics on R^3 admitting a horizon , 2003 .
[15] R. Schoen,et al. On the Asymptotics for the Vacuum Einstein Constraint Equations , 2003, gr-qc/0301071.
[16] P. Chruściel,et al. On mapping properties of the general relativistic constraints operator in weighted function spaces , 2003, gr-qc/0301073.
[17] P. Chruściel,et al. On 'many-black-hole' vacuum spacetimes , 2002, gr-qc/0210103.
[18] Justin Corvino. Scalar Curvature Deformation and a Gluing Construction for the Einstein Constraint Equations , 2000 .
[19] J. Lohkamp. Scalar curvature and hammocks , 1999 .
[20] S. Kuksin. On long-time behavior solutions of nonlinear wave equations , 1994 .
[21] Ó Murchadha N,et al. Trapped surfaces due to concentration of gravitational radiation. , 1991, Physical review letters.
[22] R. Bartnik. The mass of an asymptotically flat manifold , 1986 .
[23] Shing-Tung Yau,et al. On the proof of the positive mass conjecture in general relativity , 1979 .
[24] J. Marsden,et al. Deformations of the scalar curvature , 1975 .
[25] Charles W. Misner,et al. THE METHOD OF IMAGES IN GEOMETROSTATICS , 1963 .
[26] R. W. Lindquist,et al. INTERACTION ENERGY IN GEOMETROSTATICS , 1963 .
[27] Y. Fourès-Bruhat,et al. Théorème d'existence pour certains systèmes d'équations aux dérivées partielles non linéaires , 1952 .
[28] D.,et al. The global nonlinear stability of the Minkowski space , 2018 .
[29] R. Schoen,et al. Initial data and the Einstein constraint equations , 2015 .
[30] I. Rodnianski. The Cauchy problem in General Relativity , 2006 .
[31] Piotr T Chruściel,et al. Existence of non-trivial, vacuum, asymptotically simple spacetimes , 2002 .
[32] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[33] R. Geroch,et al. Global aspects of the Cauchy problem in general relativity , 1969 .