Theory and FE-analysis for structures with large deformation under magnetic loading
暂无分享,去创建一个
Patrizio Neff | Werner Wagner | Ingo Münch | P. Neff | W. Wagner | I. Münch
[1] R. Lakes,et al. Size effects due to Cosserat elasticity and surface damage in closed-cell polymethacrylimide foam , 1994, Journal of Materials Science.
[2] E. Ramm,et al. Shell theory versus degeneration—a comparison in large rotation finite element analysis , 1992 .
[3] K. Wiśniewski. A shell theory with independent rotations for relaxed Biot stress and right stretch strain , 1998 .
[4] Patrizio Neff,et al. A Geometrically Exact Micromorphic Model for Elastic Metallic Foams Accounting for Affine Microstructure. Modelling, Existence of Minimizers, Identification of Moduli and Computational Results , 2007 .
[5] Ingo Münch,et al. Ein geometrisch und materiell nichtlineares Cosserat-Modell : Theorie, Numerik und Anwendungsmöglichkeiten , 2007 .
[6] A. Eringen. Microcontinuum Field Theories , 2020, Advanced Continuum Theories and Finite Element Analyses.
[7] M. Ashby,et al. Strain gradient plasticity: Theory and experiment , 1994 .
[8] Karl H. Hofmann,et al. The Structure of Compact Groups , 2020 .
[9] Werner Wagner,et al. A robust non‐linear mixed hybrid quadrilateral shell element , 2005 .
[10] Janusz Badur,et al. Finite rotations in the description of continuum deformation , 1983 .
[11] Andrew R. Teel,et al. ESAIM: Control, Optimisation and Calculus of Variations , 2022 .
[12] C. Tsakmakis,et al. Predictions of microtorsional experiments by micropolar plasticity , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[13] E. Cosserat,et al. Théorie des Corps déformables , 1909, Nature.
[14] H. Bufler. On drilling degrees of freedom in nonlinear elasticity and a hyperelastic material description in terms of the stretch tensor. Part 1: Theory , 1995 .
[15] P. Neff,et al. Invariant formulation of hyperelastic transverse isotropy based on polyconvex free energy functions , 2003 .
[16] Patrizio Neff,et al. Existence of minimizers for a finite-strain micromorphic elastic solid , 2006, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.
[17] Carlo Sansour,et al. On drilling degrees of freedom in nonlinear elasticity and a hyperelastic material description in terms of the stretch tensor. Part 2: Application to membranes , 1996 .
[18] T. Merlini,et al. A variational formulation for finite elasticity with independent rotation and Biot-axial fields , 1997 .
[19] P. Neff. A finite-strain elastic–plastic Cosserat theory for polycrystals with grain rotations , 2006 .
[20] Gérard A. Maugin,et al. Electrodynamics of Continua I: Foundations and Solid Media , 1989 .
[21] Carlo Sansour,et al. Multiplicative updating of the rotation tensor in the finite element analysis of rods and shells – a path independent approach , 2003 .
[22] J. Dyszlewicz. Micropolar theory of elasticity , 2004 .
[23] Thomas J. R. Hughes,et al. Formulations of finite elasticity with independent rotations , 1992 .
[24] S. Cleja-Tigoiu,et al. Couple stresses and non-Riemannian plastic connection in finite elasto-plasticity , 2002 .
[25] G. Maugin. On the structure of the theory of polar elasticity , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[26] P. Comba,et al. Part I. Theory , 2007 .
[27] Patrizio Neff,et al. Symmetric Cauchy stresses do not imply symmetric Biot strains in weak formulations of isotropic hyperelasticity with rotational degrees of freedom. , 2008 .
[28] P. Neff,et al. Curl bounds Grad on SO(3) , 2006 .