Rolling Stiefel manifolds
暂无分享,去创建一个
Knut Hüper | Martin Kleinsteuber | Fatima Silva Leite | Martin Kleinsteuber | K. Hüper | Fatima Silva Leite
[1] David L. Elliott,et al. Geometric control theory , 2000, IEEE Trans. Autom. Control..
[2] R. Adler,et al. Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .
[3] John B. Moore,et al. Essential Matrix Estimation Using Gauss-Newton Iterations on a Manifold , 2007, International Journal of Computer Vision.
[4] D. Marsh. Applied Geometry for Computer Graphics and CAD , 1999 .
[5] P. Bickel,et al. Consistent independent component analysis and prewhitening , 2005, IEEE Transactions on Signal Processing.
[6] Jason A. Zimmerman,et al. Optimal Control of the Sphere Sn Rolling on En , 2005, Math. Control. Signals Syst..
[7] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[8] R. Giambò,et al. An analytical theory for Riemannian cubic polynomials , 2002 .
[9] Alan Edelman,et al. The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..
[10] Robert E. Mahony,et al. A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces , 2002, SIAM Rev..
[11] P. Crouch,et al. The De Casteljau Algorithm on Lie Groups and Spheres , 1999 .
[12] Lyle Noakes,et al. Cubic Splines on Curved Spaces , 1989 .
[13] H. V. Trees,et al. Covariance, Subspace, and Intrinsic CramrRao Bounds , 2007 .
[14] D. Gabay. Minimizing a differentiable function over a differential manifold , 1982 .
[15] John B. Moore,et al. Quadratically convergent algorithms for optimal dextrous hand grasping , 2002, IEEE Trans. Robotics Autom..
[16] F. Park,et al. Bézier Curves on Riemannian Manifolds and Lie Groups with Kinematics Applications , 1995 .
[17] S. Shankar Sastry,et al. Optimization Criteria and Geometric Algorithms for Motion and Structure Estimation , 2001, International Journal of Computer Vision.
[18] Martin Kleinsteuber,et al. Complete controllability of the rolling N-sphere - A constructive proof , 2006 .
[19] K. Hüper,et al. On the Geometry of Rolling and Interpolation Curves on Sn, SOn, and Grassmann Manifolds , 2007 .
[20] Uwe Helmke,et al. Newton's algorithm in Euclidean Jordan algebras, with applications to robotics , 2002, Commun. Inf. Syst..
[21] Michael E. Taylor,et al. Differential Geometry I , 1994 .
[22] S.T. Smith,et al. Covariance, subspace, and intrinsic Crame/spl acute/r-Rao bounds , 2005, IEEE Transactions on Signal Processing.
[23] A. Agrachev,et al. Control Theory from the Geometric Viewpoint , 2004 .
[24] U. Helmke,et al. Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.
[25] Xavier J. R. Avula,et al. for Robotic Manipulation , 1992 .
[26] F. Silva Leite,et al. Geometry and the Dynamic Interpolation Problem , 1991, 1991 American Control Conference.
[27] V. Jurdjevic,et al. Rolling Problems on Spaces of Constant Curvature , 2007 .
[28] A. Bloch,et al. Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.
[29] A. D. Lewis,et al. Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.