Rolling Stiefel manifolds

In this article, rolling maps for real Stiefel manifolds are studied. Real Stiefel manifolds being the set of all orthonormal k-frames of an n-dimensional real Euclidean space are compact manifolds. They are considered here as rigid bodies embedded in a suitable Euclidean space such that the corresponding Euclidean group acts on the rigid body by rotations and translations in the usual way. We derive the kinematic equations describing this rolling motion.

[1]  David L. Elliott,et al.  Geometric control theory , 2000, IEEE Trans. Autom. Control..

[2]  R. Adler,et al.  Newton's method on Riemannian manifolds and a geometric model for the human spine , 2002 .

[3]  John B. Moore,et al.  Essential Matrix Estimation Using Gauss-Newton Iterations on a Manifold , 2007, International Journal of Computer Vision.

[4]  D. Marsh Applied Geometry for Computer Graphics and CAD , 1999 .

[5]  P. Bickel,et al.  Consistent independent component analysis and prewhitening , 2005, IEEE Transactions on Signal Processing.

[6]  Jason A. Zimmerman,et al.  Optimal Control of the Sphere Sn Rolling on En , 2005, Math. Control. Signals Syst..

[7]  Charles R. Johnson,et al.  Topics in Matrix Analysis , 1991 .

[8]  R. Giambò,et al.  An analytical theory for Riemannian cubic polynomials , 2002 .

[9]  Alan Edelman,et al.  The Geometry of Algorithms with Orthogonality Constraints , 1998, SIAM J. Matrix Anal. Appl..

[10]  Robert E. Mahony,et al.  A Grassmann-Rayleigh Quotient Iteration for Computing Invariant Subspaces , 2002, SIAM Rev..

[11]  P. Crouch,et al.  The De Casteljau Algorithm on Lie Groups and Spheres , 1999 .

[12]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[13]  H. V. Trees,et al.  Covariance, Subspace, and Intrinsic CramrRao Bounds , 2007 .

[14]  D. Gabay Minimizing a differentiable function over a differential manifold , 1982 .

[15]  John B. Moore,et al.  Quadratically convergent algorithms for optimal dextrous hand grasping , 2002, IEEE Trans. Robotics Autom..

[16]  F. Park,et al.  Bézier Curves on Riemannian Manifolds and Lie Groups with Kinematics Applications , 1995 .

[17]  S. Shankar Sastry,et al.  Optimization Criteria and Geometric Algorithms for Motion and Structure Estimation , 2001, International Journal of Computer Vision.

[18]  Martin Kleinsteuber,et al.  Complete controllability of the rolling N-sphere - A constructive proof , 2006 .

[19]  K. Hüper,et al.  On the Geometry of Rolling and Interpolation Curves on Sn, SOn, and Grassmann Manifolds , 2007 .

[20]  Uwe Helmke,et al.  Newton's algorithm in Euclidean Jordan algebras, with applications to robotics , 2002, Commun. Inf. Syst..

[21]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .

[22]  S.T. Smith,et al.  Covariance, subspace, and intrinsic Crame/spl acute/r-Rao bounds , 2005, IEEE Transactions on Signal Processing.

[23]  A. Agrachev,et al.  Control Theory from the Geometric Viewpoint , 2004 .

[24]  U. Helmke,et al.  Optimization and Dynamical Systems , 1994, Proceedings of the IEEE.

[25]  Xavier J. R. Avula,et al.  for Robotic Manipulation , 1992 .

[26]  F. Silva Leite,et al.  Geometry and the Dynamic Interpolation Problem , 1991, 1991 American Control Conference.

[27]  V. Jurdjevic,et al.  Rolling Problems on Spaces of Constant Curvature , 2007 .

[28]  A. Bloch,et al.  Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[29]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.