Logical inference derivation of the quantum theoretical description of Stern–Gerlach and Einstein–Podolsky–Rosen–Bohm experiments
暂无分享,去创建一个
Kristel Michielsen | Hans De Raedt | Mikhail I. Katsnelson | M. Katsnelson | H. Raedt | K. Michielsen
[1] N. L. Johnson,et al. Multivariate Analysis , 1958, Nature.
[2] Evgenii Mikhailovich Lifshitz,et al. Relativistic quantum theory , 1971 .
[3] Quantum mechanical description of Stern-Gerlach experiments , 2004, quant-ph/0409206.
[4] W. Näther. Optimum experimental designs , 1994 .
[5] M. Katsnelson,et al. Quantum theory as the most robust description of reproducible experiments: application to a rigid linear rotator , 2013, Optics & Photonics - Optical Engineering + Applications.
[6] R. T. Cox. Probability, frequency and reasonable expectation , 1990 .
[7] E. Jaynes. Probability theory : the logic of science , 2003 .
[8] E. Madelung,et al. Quantentheorie in hydrodynamischer Form , 1927 .
[9] N. D. Mermin,et al. Quantum mechanics vs local realism near the classical limit: A Bell inequality for spin s , 1980 .
[10] Kristel Michielsen,et al. Quantum theory as a description of robust experiments: Derivation of the Pauli equation , 2015, 1504.04944.
[11] P. Liaud,et al. Calcul, Montage et expérimentation d'un nouveau type d'aimant de ⪡ stern et gerlach ⪢ comme polariseur ou analyseur de polarisation des neutrons , 1975 .
[12] E. Wigner,et al. Book Reviews: Group Theory. And Its Application to the Quantum Mechanics of Atomic Spectra , 1959 .
[13] B. Roy Frieden,et al. Science from Fisher Information: A Unification , 2004 .
[14] H De Raedt,et al. Quantum theory as plausible reasoning applied to data obtained by robust experiments , 2016, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[15] B. Roy Frieden,et al. Fisher information as the basis for the Schrödinger wave equation , 1989 .
[16] Albert Einstein,et al. Can Quantum-Mechanical Description of Physical Reality Be Considered Complete? , 1935 .
[17] S. Bernstein,et al. STERN-GERLACH EXPERIMENT ON POLARIZED NEUTRONS , 1954 .
[18] K. Michielsen,et al. Quantum theory as the most robust description of reproducible experiments: application to a rigid linear rotator , 2013, Optics & Photonics - Optical Engineering + Applications.
[19] M. Katsnelson,et al. Kramers degeneracy and relaxation in vanadium, niobium and tantalum clusters , 2018, 1803.04320.
[20] Thomas Bräutigam. I, J , 1887, Klassiker des deutschsprachigen Dokumentarfilms.
[21] Roger Barlow,et al. Statistics : a guide to the use of statistical methods in thephysical sciences , 1989 .
[22] W. Gerlāch,et al. Der experimentelle Nachweis der Richtungsquantelung im Magnetfeld , 1922 .
[23] Thomas Hellman. PHIL , 2018, Encantado.
[24] G. Pólya. Mathematics and Plausible Reasoning , 1958 .
[25] M. Tribus. Rational descriptions, decisions, and designs , 1969 .
[26] H. S. Allen. The Quantum Theory , 1928, Nature.
[27] Harry L. Van Trees,et al. Detection, Estimation, and Modulation Theory, Part I , 1968 .
[28] H. Batelaan,et al. Stern-Gerlach Effect for Electron Beams , 1997 .
[29] Anthony C. Atkinson,et al. Optimum Experimental Designs, with SAS , 2007 .
[30] J. Neumann. Mathematical Foundations of Quantum Mechanics , 1955 .
[31] Ericka Stricklin-Parker,et al. Ann , 2005 .
[32] R. T. Cox. The Algebra of Probable Inference , 1962 .
[33] G. Baym. Lectures On Quantum Mechanics , 1969 .
[34] R. Leighton,et al. Feynman Lectures on Physics , 1971 .
[35] Grey Giddins,et al. Statistics , 2016, The Journal of hand surgery, European volume.
[36] R. T. Cox,et al. The Algebra of Probable Inference , 1962 .
[37] L. Ballentine. Quantum mechanics : a modern development , 1998 .