Bayesian Point Estimation and the PERT Scheduling of Stochastic Activities

Conventional PERT procedures frequently introduce undesirable and often indeterminant biases into the derived time statistics of large-scale complex projects. An alternative scheduling procedure BPERT is developed, employing an activity-based time estimation loss structure and a cost-minimization criterion. Bayesian point estimates are formulated for beta-distributed activity duration times minimizing the potential losses of misestimation. Viewed as certainty equivalents, these time estimates are then aggregated to yield a single project completion time. “Crashing” is introduced, and us implications for BPERT examined. An illustrative example contrasts PERT and BPERT.

[1]  K. Pearson Tables of the incomplete beta-function , 1951 .

[2]  C. E. Clark The Greatest of a Finite Set of Random Variables , 1961 .

[3]  James E. Kelley,et al.  Critical-Path Planning and Scheduling: Mathematical Basis , 1961 .

[4]  D. R. Fulkerson Expected Critical Path Lengths in PERT Networks , 1962 .

[5]  Van Slyke,et al.  MONTE CARLO METHODS AND THE PERT PROBLEM , 1963 .

[6]  Richard M. Van Slyke,et al.  Letter to the Editor---Monte Carlo Methods and the PERT Problem , 1963 .

[7]  C. T. Clingen Letter to the Editor-A Modification of Fulkerson's PERT Algorithm , 1964 .

[8]  K. MacCrimmon,et al.  An Analytical Study of the PERT Assumptions , 1964 .

[9]  A. W. Wortham,et al.  A Statistical Theory for PERT Critical Path Analysis , 1966 .

[10]  Albert Battersby,et al.  Advances in Critical Path Methods , 1966 .

[11]  A. R. Klingel,et al.  Bias in Pert Project Completion Time Calculations for a Real Network , 1966 .

[12]  William R. King,et al.  Subjective Time Estimates in Critical Path Planning--A Preliminary Analysis , 1967 .

[13]  William R. King,et al.  On the Analysis of Critical Path Time Estimating Behavior , 1967 .

[14]  S. Elmaghraby On the Expected Duration of PERT Type Networks , 1967 .

[15]  Robert Schlaifer,et al.  Analysis of decisions under uncertainty , 1969 .

[16]  N. L. Johnson,et al.  Tables of the Incomplete Beta-Function. , 1972 .

[17]  Robert L. Winkler,et al.  Bayesian point estimation and prediction , 1974 .