A cardinality theory for vaguely defined objects-problems of inequalities and applications
暂无分享,去创建一个
[1] Siegfried Gottwald. Mehrwertige Logik - eine Einführung in Theorie und Anwendungen , 1989, Logica Nova.
[2] Maciej Wygralak,et al. Generalized cardinal numbers and operations on them , 1993 .
[3] Alfred Tajtebaum-Tarski. Sur quelques théorèmes qui équivalent à l'axiome du choix , 1924 .
[4] Didier Dubois,et al. Scalar evaluations of fuzzy sets: overview and applications , 1990 .
[5] D. Dubois,et al. Twofold fuzzy sets and rough sets—Some issues in knowledge representation , 1987 .
[6] Sankar K. Pal. Image enhancement and a quantitative index using fuzzy sets , 1987 .
[7] Vilém Novák. Fuzzy sets-the approximation of semisets , 1984 .
[8] Satoko Titani,et al. Intuitionistic fuzzy logic and intuitionistic fuzzy set theory , 1984, Journal of Symbolic Logic.
[9] D. Dubois,et al. Measuring properties of fuzzy sets: a general technique and its use in fuzzy query evaluation , 1990 .
[10] Wacław Sierpiński,et al. Cardinal and Ordinal Numbers , 1966 .
[11] M Wygrakak,et al. Fuzzy cardinals based on the generalized equality of fuzzy subsets , 1986 .
[12] P. Vopenka,et al. Mathematics in the alternative set theory , 1979 .
[13] J. Goguen. L-fuzzy sets , 1967 .
[14] Denis Higgs,et al. Injectivity in the Topos of Complete Heyting Algebra Valued Sets , 1984, Canadian Journal of Mathematics.
[15] D. Dubois,et al. Fuzzy cardinality and the modeling of imprecise quantification , 1985 .
[16] Lotfi A. Zadeh,et al. PRUF—a meaning representation language for natural languages , 1978 .
[17] Henri Prade,et al. Lipski's approach to incomplete information databases restated and generalized in the setting of Zadeh's possibility theory , 1984, Inf. Syst..