Comparative Visualization Using Cross-Mesh Field Evaluations and Derived Quantities

We present a data-level comparative visualization system that utilizes two key pieces of technology: (1) cross-mesh field evaluation - algorithms to evaluate a field from one mesh onto another - and (2) a highly flexible system for creating new derived quantities. In contrast to previous comparative visualization efforts, which focused on "A-B" comparisons, our system is able to compare many related simulations in a single analysis. Types of possible novel comparisons include comparisons of ensembles of data generated through parameter studies, or comparisons of time-varying data. All portions of the system have been parallelized and our results are applicable to petascale data sets.

[1]  Alex Pang,et al.  Data level comparison of wind tunnel and computational fluid dynamics data , 1998 .

[2]  Lloyd Treinish,et al.  An extended data-flow architecture for data analysis and visualization , 1995, COMG.

[3]  Kenneth I. Joy,et al.  Frameworks for Visualization at the Extreme Scale , 2007 .

[4]  Steven G. Parker,et al.  Large-scale Computational Science Applications using the SCIRun Problem Solving Environment , 2000 .

[5]  Timothy Urness,et al.  Analyzing Industrial Furnace Efficiency Using Comparative Visualization in a Virtual Reality Environment , 1999 .

[6]  Cláudio T. Silva,et al.  VisTrails: enabling interactive multiple-view visualizations , 2005, VIS 05. IEEE Visualization, 2005..

[7]  Valerio Pascucci,et al.  Local and global comparison of continuous functions , 2004, IEEE Visualization 2004.

[8]  Cláudio T. Silva,et al.  VisTrails: visualization meets data management , 2006, SIGMOD Conference.

[9]  Nelson L. Max,et al.  A contract based system for large data visualization , 2005, VIS 05. IEEE Visualization, 2005..

[10]  Alex T. Pang,et al.  Data level comparison of wind tunnel and computational fluid dynamics data , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[11]  William E. Lorensen,et al.  The design and implementation of an object-oriented toolkit for 3D graphics and visualization , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[12]  Alex T. Pang,et al.  Comparisons of wind tunnel experiments and computational fluid dynamics simulations , 2003, J. Vis..

[13]  James P. Ahrens,et al.  Scout: a hardware-accelerated system for quantitatively driven visualization and analysis , 2004, IEEE Visualization 2004.

[14]  Peter Williams,et al.  Foundations for Measuring Volume Rendering Quality , 1997 .

[15]  Vivek Verma,et al.  Comparative flow visualization , 2004, IEEE Transactions on Visualization and Computer Graphics.

[16]  Hans-Georg Pagendarm,et al.  Visual Simulation of Experimental Oil-Flow Visualization by Spot Noise Images from Numerical Flow Simulation , 1995, Visualization in Scientific Computing.

[17]  Min Chen,et al.  Comparative evaluation of visualization and experimental results using image comparison metrics , 2002, IEEE Visualization, 2002. VIS 2002..

[18]  Lambertus Hesselink,et al.  Feature comparisons of 3-D vector fields using earth mover's distance , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[19]  Chris Henze,et al.  Large field visualization with demand-driven calculation , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[20]  Hank Childs,et al.  Beyond Meat Grinders: An Analysis Framework Addressing the Scale and Complexity of Large Data Sets , 2006 .

[21]  Thomas Ertl,et al.  Comparative Visualization of Instabilities in Crash-Worthiness Simulations , 2001, VisSym.