A 1.8-V 2.4-GHz Monolithic CMOS Inductor-less Frequency Synthesizer for Bluetooth Application

Bluetooth is a new wireless standard that uses short-range radio links to replace the cables connecting portable and/or fixed electronic devices. The standard defines a uniform structure for a wide range of devices to communicate with each other. The goal of Bluetooth transceivers is to achieve robustness, low complexity, low power and low cost. Conventional monolithic frequency synthesizer is difficult to fulfil the Bluetooth specifications . Traditional designs usually generate a 2.4-GHz signal using LC-oscillators with on-chip spiral inductors. These inductors have low quality factors, occupy a large chip area, and are quite sensitive to process variation, which degrade the performance in terms of cost, power and production yield.

[1]  Howard C. Luong,et al.  2-V 900-MHz quadrature coupled LC oscillators with improved amplitude and phase matchings , 1999, ISCAS'99. Proceedings of the 1999 IEEE International Symposium on Circuits and Systems VLSI (Cat. No.99CH36349).

[2]  Behzad Razavi,et al.  A 6 GHz 60 mW BiCMOS phase-locked loop with 2 V supply , 1994, Proceedings of IEEE International Solid-State Circuits Conference - ISSCC '94.

[3]  M. Bayer,et al.  Cell based fully integrated CMOS frequency synthesizers , 1993, Proceedings of IEEE Custom Integrated Circuits Conference - CICC '93.

[4]  Michiel Steyaert,et al.  A 1.8-GHz low-phase-noise CMOS VCO using optimized hollow spiral inductors , 1997, IEEE J. Solid State Circuits.

[5]  Behzad Razavi,et al.  RF Microelectronics , 1997 .

[6]  W. B. Loh,et al.  High quality factor silicon-integrated spiral inductors achieved by using thick top metal with different passivation schemes , 2001, 2001 International Symposium on VLSI Technology, Systems, and Applications. Proceedings of Technical Papers (Cat. No.01TH8517).

[7]  K. Halonen,et al.  A 4 GHz CMOS multiple modulus prescaler , 1998, 1998 IEEE International Conference on Electronics, Circuits and Systems. Surfing the Waves of Science and Technology (Cat. No.98EX196).

[8]  B. Razavi,et al.  A 2.6-GHz/5.2-GHz frequency synthesizer in 0.4-/spl mu/m CMOS technology , 2000, IEEE Journal of Solid-State Circuits.

[9]  Ali Hajimiri,et al.  Phase noise in multi-gigahertz CMOS ring oscillators , 1998, Proceedings of the IEEE 1998 Custom Integrated Circuits Conference (Cat. No.98CH36143).

[10]  B. Bisanti,et al.  An 18-mW 2.5-GHz/900-MHz BiCMOS dual frequency synthesizer with < 10-Hz RF carrier resolution , 2000, Proceedings of the 26th European Solid-State Circuits Conference.

[11]  M. Steyaert,et al.  A fully integrated CMOS DCS-1800 frequency synthesizer , 1998, 1998 IEEE International Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First Edition (Cat. No.98CH36156).

[12]  Philip W. Mcentarfer,et al.  Cell-based fully integrated CMOS frequency synthesizers , 1993 .

[13]  V. Cheung,et al.  A 1-V 2.5-mW 5.2-GHz frequency divider in a 0.35-μm CMOS process , 2003, IEEE J. Solid State Circuits.

[14]  Byungsoo Chang,et al.  A 1.2 GHz CMOS dual-modulus prescaler using new dynamic D-type flip-flops , 1996 .

[15]  H.C. Luong,et al.  A 1-V 2.5-mW 5.2-GHz frequency divider in a 0.35-/spl mu/m CMOS process , 2002, 2002 Symposium on VLSI Circuits. Digest of Technical Papers (Cat. No.02CH37302).

[16]  Andrew Z Grzegorek,et al.  ∝s Settling and 2Mb/s Closed Loop Modulation , 2000 .

[17]  U. Langmann,et al.  An 8 GHz silicon bipolar clock-recovery and data-regenerator IC , 1994 .

[18]  Jan Craninckx,et al.  A 1.75-GHz/3-V dual-modulus divide-by-128/129 prescaler in 0.7-/spl mu/m CMOS , 1996 .

[19]  J. Maligeorgos,et al.  A 2 V 5.1-5.8 GHz image-reject receiver with wide dynamic range , 2000, 2000 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.00CH37056).

[20]  R. Y. Chen High-speed CMOS frequency divider , 1997 .

[21]  Chuan Yi Tang,et al.  A 2.|E|-Bit Distributed Algorithm for the Directed Euler Trail Problem , 1993, Inf. Process. Lett..

[22]  HongMo Wang A 1.8 V 3 mW 16.8 GHz frequency divider in 0.25 /spl mu/m CMOS , 2000 .

[23]  H.R. Rategh,et al.  A CMOS frequency synthesizer with an injection-locked frequency divider for a 5-GHz wireless LAN receiver , 2000, IEEE Journal of Solid-State Circuits.

[24]  Michiel Steyaert,et al.  A 1.75-GHz/3-V Dual-Modulus Divide-by-128/129 Prescaler in 0.7-μM CMOS , 1996, ESSCIRC '95: Twenty-first European Solid-State Circuits Conference.

[25]  Kwyro Lee,et al.  A novel high-speed ring oscillator for multiphase clock generation using negative skewed delay scheme , 1997, IEEE J. Solid State Circuits.

[26]  M. Wurzer,et al.  A 45 GHz SiGe active frequency multiplier , 2002, 2002 IEEE International Solid-State Circuits Conference. Digest of Technical Papers (Cat. No.02CH37315).

[27]  Kenji Taniguchi,et al.  An implementation technique of dynamic CMOS circuit applicable to asynchronous/synchronous logic , 1998, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187).

[28]  Howard C. Luong,et al.  A 1.5-V 4-GHz dynamic-loading regenerative frequency doubler in a 0.35-/spl mu/m CMOS process , 2002, IMS 2002.

[29]  S. S. Rofail,et al.  Design and analysis of a ±1V CMOS four-quadrant analogue multiplier , 1998 .

[30]  Nikolay Tchamov,et al.  1.2 V gigahertz-resonance-ring ICO/VCO , 1997 .