Characterization of a Linear Photoconductive Switch Used in Nanosecond Pulsed Electric Field Generator

In this letter, an experimental and quantitative study on the resistance behavior of a photoconductive semiconductor switch (PCSS) is reported. The study of the PCSS behavior is important for an accurate integration in a nanosecond pulse shaping generator. The effect of the bias voltage and the optical pulse energy on the switching efficiency is presented. The shift of the PCSS absorption threshold under the bias voltage is also described. The minimum resistance reached by the silicon semiconductor during the temporal switching is 3.8 Ω for 4-kV bias voltage and 48-μJ optical energy.

[1]  B. Sartorius,et al.  All-fiber terahertz time-domain spectrometer operating at 1.5 microm telecom wavelengths. , 2008, Optics express.

[2]  W. Nunnally,et al.  ON-State Characteristics of a High-Power Photoconductive Switch Fabricated From Compensated 6-H Silicon Carbide , 2008, IEEE Transactions on Plasma Science.

[3]  W. Franz Einfluß eines elektrischen Feldes auf eine optische Absorptionskante , 1958 .

[4]  D. Gontier,et al.  High-Voltage Rectifier Diodes Used as Photoconductive Device for Microwave Pulse Generation , 2006, IEEE Transactions on Plasma Science.

[5]  V. Couderc,et al.  A 30-kHz Monocycle Generator Using Linear Photoconductive Switches and a Microchip Laser , 2008, IEEE Photonics Technology Letters.

[6]  Salim Faci,et al.  1.55-$\mu$ m GaNAsSb-Based Photoconductive Switch for Microwave Switching , 2010, IEEE Photonics Technology Letters.

[7]  Vincent Couderc,et al.  Kilovolt, Nanosecond, and Picosecond Electric Pulse Shaping by Using Optoelectronic Switching , 2010, IEEE Photonics Technology Letters.

[8]  Caterina Merla,et al.  Characterization of a 50-Ω Exposure Setup for High-Voltage Nanosecond Pulsed Electric Field Bioexperiments , 2011, IEEE Transactions on Biomedical Engineering.

[9]  Vincent Couderc,et al.  A 10-$\Omega$ High-Voltage Nanosecond Pulse Generator , 2010, IEEE Transactions on Microwave Theory and Techniques.

[10]  Albert G. Baca,et al.  Photoconductive semiconductor switches , 1997 .

[11]  Arthur C. Gossard,et al.  1.55μm ultrafast photoconductive switches based on ErAs:InGaAs , 2008 .

[12]  Walter R. Buchwald,et al.  Ultra-wideband source using gallium arsenide photoconductive semiconductor switches , 1997 .

[13]  W.D. Helgeson,et al.  High Gain Photoconductive Semiconductor Switching , 1991, Eighth IEEE International Conference on Pulsed Power.

[14]  R.M. O'Connell,et al.  Photoconductive switch design for microwave applications , 2009, IEEE Transactions on Dielectrics and Electrical Insulation.

[15]  A. Gossard,et al.  Toward a 1550 nm InGaAs photoconductive switch for terahertz generation. , 2009, Optics letters.

[16]  Martin A. Gundersen,et al.  Avalanche injection model for the lock‐on effect in III‐V power photoconductive switches , 1993 .