Encoding Light Intensity by the Cone Photoreceptor Synapse

[1]  K. Rábl,et al.  Kinetics of Exocytosis Is Faster in Cones Than in Rods , 2005, The Journal of Neuroscience.

[2]  William H Baldridge,et al.  Proton-Mediated Feedback Inhibition of Presynaptic Calcium Channels at the Cone Photoreceptor Synapse , 2005, The Journal of Neuroscience.

[3]  G. Matthews,et al.  Visualizing Synaptic Ribbons in the Living Cell , 2004, The Journal of Neuroscience.

[4]  N. Vardi,et al.  Coordinated multivesicular release at a mammalian ribbon synapse , 2004, Nature Neuroscience.

[5]  Peter Sterling,et al.  How retinal ganglion cells prevent synaptic noise from reaching the spike output. , 2004, Journal of neurophysiology.

[6]  K. Rábl,et al.  A Highly Ca2+-Sensitive Pool of Vesicles Contributes to Linearity at the Rod Photoreceptor Ribbon Synapse , 2004, Neuron.

[7]  P. Sterling,et al.  Streamlined Synaptic Vesicle Cycle in Cone Photoreceptor Terminals , 2004, Neuron.

[8]  Dale Purves,et al.  Perceiving the intensity of light. , 2004, Psychological review.

[9]  A. Berntson,et al.  The unitary event amplitude of mouse retinal on-cone bipolar cells , 2003, Visual Neuroscience.

[10]  C. Guatimosim,et al.  Synaptic Vesicle Pools at the Frog Neuromuscular Junction , 2003, Neuron.

[11]  M. Kreft,et al.  Properties of exocytotic response in vertebrate photoreceptors. , 2003, Journal of neurophysiology.

[12]  D. Copenhagen,et al.  Ryanodine stores and calcium regulation in the inner segments of salamander rods and cones , 2003, The Journal of physiology.

[13]  P. Sterling,et al.  Synaptic Ribbon Conveyor Belt or Safety Belt? , 2003, Neuron.

[14]  P. Detwiler,et al.  Directionally selective calcium signals in dendrites of starburst amacrine cells , 2002, Nature.

[15]  S. DeVries,et al.  Exocytosed Protons Feedback to Suppress the Ca2+ Current in Mammalian Cone Photoreceptors , 2001, Neuron.

[16]  JoAnn Buchanan,et al.  Visualizing recycling synaptic vesicles in hippocampal neurons by FM 1-43 photoconversion , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[17]  Guosong Liu,et al.  A Developmental Switch in Neurotransmitter Flux Enhances Synaptic Efficacy by Affecting AMPA Receptor Activation , 2001, Neuron.

[18]  C. Stevens,et al.  "Kiss and run" exocytosis at hippocampal synapses. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Ege T. Kavalali,et al.  Rapid Reuse of Readily Releasable Pool Vesicles at Hippocampal Synapses , 2000, Neuron.

[20]  D. Zenisek,et al.  Transport, capture and exocytosis of single synaptic vesicles at active zones , 2000, Nature.

[21]  R. Normann,et al.  Light adaptation and sensitivity controlling mechanisms in vertebrate photoreceptors , 1998, Progress in Retinal and Eye Research.

[22]  Ege T. Kavalali,et al.  Kinetics and regulation of fast endocytosis at hippocampal synapses , 1998, Nature.

[23]  R. W. Rodieck The First Steps in Seeing , 1998 .

[24]  F. Werblin,et al.  Postsynaptic response kinetics are controlled by a glutamate transporter at cone photoreceptors. , 1998, Journal of Neurophysiology.

[25]  Richard H. Kramer,et al.  Cyclic-nucleotide-gated channels mediate synaptic feedback by nitric oxide , 1997, Nature.

[26]  H. Spekreijse,et al.  Horizontal cells feed back to cones by shifting the cone calcium-current activation range , 1996, Vision Research.

[27]  J. Lübke,et al.  FM1-43 dye ultrastructural localization in and release from frog motor nerve terminals. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[28]  E. A. Schwartz,et al.  A cGMP-gated current can control exocytosis at cone synapses , 1994, Neuron.

[29]  F. Werblin,et al.  Miniature excitatory postsynaptic currents in bipolar cells of the tiger salamander retina , 1994, Vision Research.

[30]  David J. Calkins,et al.  M and L cones in macaque fovea connect to midget ganglion cells by different numbers of excitatory synapses , 1994, Nature.

[31]  J. Pokorny,et al.  Effect of sawtooth polarity on chromatic and luminance detection , 1994, Visual Neuroscience.

[32]  S. Wu,et al.  Synaptic transmission in the outer retina. , 1994, Annual review of physiology.

[33]  S. Barnes,et al.  Modulation of transmission gain by protons at the photoreceptor output synapse. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[34]  R. J. Koshel,et al.  Subtractive processes in light adaptation , 1992, Vision Research.

[35]  D. Baylor,et al.  Visual transduction in cones of the monkey Macaca fascicularis. , 1990, The Journal of physiology.

[36]  J. Pokorny,et al.  Sawtooth contrast sensitivity: Decrements have the edge , 1989, Vision Research.

[37]  B. Hille,et al.  Ionic channels of the inner segment of tiger salamander cone photoreceptors , 1989, The Journal of general physiology.

[38]  W. Geisler Sequential ideal-observer analysis of visual discriminations. , 1989, Psychological review.

[39]  Wilson S. Geisler,et al.  The physical limits of grating visibility , 1987, Vision Research.

[40]  Martin Wilson,et al.  Signal clipping by the rod output synapse , 1987, Nature.

[41]  P. Lennie,et al.  Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque. , 1984, The Journal of physiology.

[42]  J F Ashmore,et al.  An analysis of transmission from cones to hyperpolarizing bipolar cells in the retina of the turtle. , 1983, The Journal of physiology.

[43]  D. Attwell,et al.  The properties of single cones isolated from the tiger salamander retina , 1982, The Journal of physiology.

[44]  F. Werblin Control of Retinal Sensitivity II . Lateral Interactions at the Outer Plexiform Layer , 2022 .

[45]  F. Werblin,et al.  Control of Retinal Sensitivity: I. Light and Dark Adaptation of Vertebrate Rods and Cones , 1974 .

[46]  R W Jones,et al.  Increment and decrement visual thresholds. , 1968, Journal of the Optical Society of America.