Mammalian collagen receptors.

Collagen-rich extracellular matrices are abundant and ubiquitous in the mammalian body. Collagens are not only essential for the mechanical stability of tissues, but are also intimately involved in controlling cell behaviour. The hallmark of collagens is a triple helix made up of polypeptide chains containing glycine-X-Y repeats. A structurally and functionally diverse group of cell surface receptors mediates the recognition of triple-helical collagen: integrins, discoidin domain receptors, glycoprotein VI, leukocyte-associated IG-like receptor-1, and members of the mannose receptor family. In this review, we discuss the structure and function of these receptors, focussing on the principles involved in collagen recognition.

[1]  J. Morrow,et al.  Lack of Integrin α1β1 Leads to Severe Glomerulosclerosis after Glomerular Injury , 2004 .

[2]  T. Kanaji,et al.  The contribution of glycoprotein VI to stable platelet adhesion and thrombus formation illustrated by targeted gene deletion. , 2003, Blood.

[3]  Junichi Takagi,et al.  Structures of the αL I Domain and Its Complex with ICAM-1 Reveal a Shape-Shifting Pathway for Integrin Regulation , 2003, Cell.

[4]  M. Humphries,et al.  Integrin α2 I-domain is a binding site for collagens , 1995 .

[5]  Y. Takada,et al.  Direct binding of collagen to the I domain of integrin alpha 2 beta 1 (VLA-2, CD49b/CD29) in a divalent cation-independent manner. , 1994, The Journal of biological chemistry.

[6]  G. Schneider,et al.  Structure of human pro-matrix metalloproteinase-2: activation mechanism revealed. , 1999, Science.

[7]  A. Ashworth,et al.  Scientific Report , 2022 .

[8]  R. Farndale,et al.  Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet-activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. , 1998, Blood.

[9]  Junichi Takagi,et al.  Global Conformational Rearrangements in Integrin Extracellular Domains in Outside-In and Inside-Out Signaling , 2002, Cell.

[10]  P. Smethurst,et al.  Identification in Collagen Type I of an Integrin α2β1-binding Site Containing an Essential GER Sequence* , 1998, The Journal of Biological Chemistry.

[11]  S. Santoro,et al.  The alpha(2) integrin subunit-deficient mouse: a multifaceted phenotype including defects of branching morphogenesis and hemostasis. , 2002, The American journal of pathology.

[12]  R. Golbik,et al.  Interaction of type IV collagen with the isolated integrins α1β1 and α2β1 , 1993 .

[13]  M. Lawrence,et al.  Structure of the insulin receptor ectodomain reveals a folded-over conformation , 2006, Nature.

[14]  Maureen E. Taylor,et al.  Collagen binding by the mannose receptor mediated through the fibronectin type II domain. , 2006, The Biochemical journal.

[15]  C. Isacke,et al.  Structural Model for the Mannose Receptor Family Uncovered by Electron Microscopy of Endo180 and the Mannose Receptor* , 2006, Journal of Biological Chemistry.

[16]  K. Kivirikko,et al.  Collagens, modifying enzymes and their mutations in humans, flies and worms. , 2004, Trends in genetics : TIG.

[17]  T. Pawson,et al.  The discoidin domain receptor tyrosine kinases are activated by collagen. , 1997, Molecular cell.

[18]  Kenneth M. Yamada,et al.  uPARAP/Endo180 is essential for cellular uptake of collagen and promotes fibroblast collagen adhesion , 2003, The Journal of cell biology.

[19]  P. Siljander,et al.  Use of Synthetic Peptides to Locate Novel Integrin α2β1-binding Motifs in Human Collagen III* , 2006, Journal of Biological Chemistry.

[20]  C. Isacke,et al.  Three‐dimensional interplay among the ligand‐binding domains of the urokinase‐plasminogen‐activator‐receptor‐associated protein, Endo180 , 2003, EMBO reports.

[21]  R. Berisio,et al.  Structural bases of collagen stabilization induced by proline hydroxylation. , 2001, Biopolymers.

[22]  R. Young,et al.  Integrin alpha 2 beta 1-independent activation of platelets by simple collagen-like peptides: collagen tertiary (triple-helical) and quaternary (polymeric) structures are sufficient alone for alpha 2 beta 1-independent platelet reactivity. , 1995, The Biochemical journal.

[23]  S. Narayana,et al.  A ‘Collagen Hug’ Model for Staphylococcus aureus CNA binding to collagen , 2005, The EMBO journal.

[24]  Shawn M. Sweeney,et al.  Defining the domains of type I collagen involved in heparin- binding and endothelial tube formation. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[25]  Richard Mayne,et al.  Multiple Binding Sites in Collagen Type I for the Integrins α1β1 and α2β1 * , 2000, The Journal of Biological Chemistry.

[26]  T. Pawson,et al.  Discoidin Domain Receptor 1 Is Activated Independently of β1 Integrin* , 2000, The Journal of Biological Chemistry.

[27]  B. Nieswandt,et al.  Integrin α2-Deficient Mice Develop Normally, Are Fertile, but Display Partially Defective Platelet Interaction with Collagen* , 2002, The Journal of Biological Chemistry.

[28]  W. Ouwehand,et al.  Platelet receptor interplay regulates collagen-induced thrombus formation in flowing human blood. , 2004, Blood.

[29]  M. Mann,et al.  A Urokinase Receptor-associated Protein with Specific Collagen Binding Properties* , 2000, The Journal of Biological Chemistry.

[30]  M. Humphries,et al.  Integrin alpha 2 I-domain is a binding site for collagens. , 1995, Journal of cell science.

[31]  M. Horton,et al.  A Transmembrane Leucine Zipper Is Required for Activation of the Dimeric Receptor Tyrosine Kinase DDR1* , 2006, Journal of Biological Chemistry.

[32]  J. Heino,et al.  Selective Binding of Collagen Subtypes by Integrin α1I, α2I, and α10I Domains* , 2001, The Journal of Biological Chemistry.

[33]  T. Wess,et al.  Collagen fibril form and function. , 2005, Advances in protein chemistry.

[34]  W. Ouwehand,et al.  Integrin Activation State Determines Selectivity for Novel Recognition Sites in Fibrillar Collagens* , 2004, Journal of Biological Chemistry.

[35]  M. Lazdunski,et al.  Multifunctional activity of the extracellular domain of the M-type (180 kDa) membrane receptor for secretory phospholipases A2. , 1995, Biochemistry.

[36]  A. Kwan,et al.  The discoidin domain receptor DDR2 is a receptor for type X collagen. , 2006, Matrix biology : journal of the International Society for Matrix Biology.

[37]  S. Watson,et al.  Platelet-collagen interaction: is GPVI the central receptor? , 2003, Blood.

[38]  M. Humphries,et al.  The Integrin α1 A-domain Is a Ligand Binding Site for Collagens and Laminin* , 1997, The Journal of Biological Chemistry.

[39]  A. Ashworth,et al.  Endo180, an endocytic recycling glycoprotein related to the macrophage mannose receptor is expressed on fibroblasts, endothelial cells and macrophages and functions as a lectin receptor. , 2000, Journal of cell science.

[40]  M. Paulsson,et al.  Collagen XXVIII, a Novel von Willebrand Factor A Domain-containing Protein with Many Imperfections in the Collagenous Domain* , 2006, Journal of Biological Chemistry.

[41]  R. Liddington,et al.  Crystal structure of the A domain from the a subunit of integrin CR3 (CD11 b/CD18) , 1995, Cell.

[42]  Philipp Bucher,et al.  The discoidin domain family revisited: New members from prokaryotes and a homology‐based fold prediction , 1998, Protein science : a publication of the Protein Society.

[43]  B. Nieswandt,et al.  Glycoprotein VI but not α2β1 integrin is essential for platelet interaction with collagen , 2001 .

[44]  A. Aszódi,et al.  Loss of α10β1 integrin expression leads to moderate dysfunction of growth plate chondrocytes , 2005, Journal of Cell Science.

[45]  C. Ford,et al.  Sensing extracellular matrix: an update on discoidin domain receptor function. , 2006, Cellular signalling.

[46]  G. Spraggon,et al.  Crystal structure of the human neuropilin-1 b1 domain. , 2003, Structure.

[47]  Z. Werb,et al.  New functional roles for non-collagenous domains of basement membrane collagens , 2002, Journal of Cell Science.

[48]  A. Sonnenberg,et al.  Collagens are functional, high affinity ligands for the inhibitory immune receptor LAIR-1 , 2006, The Journal of experimental medicine.

[49]  A. Pozzi,et al.  Endo180 Binds to the C-terminal Region of Type I Collagen* , 2005, Journal of Biological Chemistry.

[50]  T. Yoshimura,et al.  Discoidin domain receptor 1 , 2005, Immunologic research.

[51]  R. Farndale,et al.  The Collagen-binding A-domains of Integrins α1β1 and α2β1Recognize the Same Specific Amino Acid Sequence, GFOGER, in Native (Triple-helical) Collagens* , 2000, The Journal of Biological Chemistry.

[52]  Richard J. Stillion,et al.  Carbohydrate‐independent recognition of collagens by the macrophage mannose receptor , 2006, European journal of immunology.

[53]  Jonathan Boyd,et al.  The hairpin structure of the 6F11F22F2 fragment from human fibronectin enhances gelatin binding , 2001, The EMBO journal.

[54]  J. Goergen,et al.  The collagen receptor DDR2 regulates proliferation and its elimination leads to dwarfism , 2001, EMBO reports.

[55]  G. Yancopoulos,et al.  An orphan receptor tyrosine kinase family whose members serve as nonintegrin collagen receptors. , 1997, Molecular cell.

[56]  D. Leahy,et al.  Crystal structure of the I-domain from the CD11a/CD18 (LFA-1, alpha L beta 2) integrin. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[57]  A. Fertala,et al.  The D2 period of collagen II contains a specific binding site for the human discoidin domain receptor, DDR2. , 2004, Journal of molecular biology.

[58]  R. Golbik,et al.  The spatial orientation of the essential amino acid residues arginine and aspartate within the alpha1beta1 integrin recognition site of collagen IV has been resolved using fluorescence resonance energy transfer. , 2000, Journal of molecular biology.

[59]  C. Isacke,et al.  The mannose receptor family. , 2002, Biochimica et biophysica acta.

[60]  R. Timpl,et al.  Supramolecular assembly of basement membranes , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[61]  F. Ruggiero,et al.  Unraveling the Amino Acid Sequence Crucial for Heparin Binding to Collagen V* , 2000, The Journal of Biological Chemistry.

[62]  K. Fujikawa,et al.  Structure of the C2 domain of human factor VIII at 1.5 Å resolution , 1999, Nature.

[63]  T. Elton,et al.  Discoidin domain receptor 2 inhibits fibrillogenesis of collagen type 1. , 2006, Journal of molecular biology.

[64]  Richard W. Farndale,et al.  Structural Basis of Collagen Recognition by Integrin α2β1 , 2000, Cell.

[65]  R. Monteiro,et al.  Chimeric Fc receptors identify ligand binding regions in human glycoprotein VI. , 2006, Journal of molecular biology.

[66]  Minsoo Kim,et al.  Bidirectional Transmembrane Signaling by Cytoplasmic Domain Separation in Integrins , 2003, Science.

[67]  R. Jaenisch,et al.  Deletion of integrin alpha 1 by homologous recombination permits normal murine development but gives rise to a specific deficit in cell adhesion. , 1996, Developmental biology.

[68]  A. Pozzi,et al.  Elevated matrix metalloprotease and angiostatin levels in integrin alpha 1 knockout mice cause reduced tumor vascularization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[69]  D. Hammer,et al.  GPVI and α2β1 play independent critical roles during platelet adhesion and aggregate formation to collagen under flow , 2005 .

[70]  R. Golbik,et al.  The alpha 1 beta 1 integrin recognition site of the basement membrane collagen molecule [alpha 1(IV)]2 alpha 2(IV). , 1993, The EMBO journal.

[71]  D. Keene,et al.  A Novel Binding Site in Collagen Type III for Integrins α1β1 and α2β1* , 2005, Journal of Biological Chemistry.

[72]  W. Vogel,et al.  Exploring the Collagen-binding Site of the DDR1 Tyrosine Kinase Receptor* , 2004, Journal of Biological Chemistry.

[73]  W. Vogel,et al.  The discoidin domain receptor tyrosine kinase DDR1 in arterial wound repair. , 2001, The Journal of clinical investigation.

[74]  J. Heino,et al.  α11β1 Integrin Recognizes the GFOGER Sequence in Interstitial Collagens* , 2003, The Journal of Biological Chemistry.

[75]  R. Young,et al.  Characterization of Type XI Collagen-Glycosaminoglycan Interactions* , 2001, The Journal of Biological Chemistry.

[76]  W. Bahou,et al.  The VLA-2 (alpha 2 beta 1) I domain functions as a ligand-specific recognition sequence for endothelial cell attachment and spreading: molecular and functional characterization. , 1994, Blood.

[77]  C. Radziejewski,et al.  Binding of discoidin domain receptor 2 to collagen I: an atomic force microscopy investigation. , 2002, Biochemistry.

[78]  Thilo Stehle,et al.  Crystal Structure of the Extracellular Segment of Integrin αVβ3 , 2001, Science.

[79]  Richard O Hynes,et al.  Integrins Bidirectional, Allosteric Signaling Machines , 2002, Cell.

[80]  Richard W Farndale,et al.  Identification of the primary collagen-binding surface on human glycoprotein VI by site-directed mutagenesis and by a blocking phage antibody. , 2004, Blood.

[81]  M. Kahn Platelet-collagen responses: molecular basis and therapeutic promise. , 2004, Seminars in thrombosis and hemostasis.

[82]  F. Fougerousse,et al.  α11β1 Integrin Is a Receptor for Interstitial Collagens Involved in Cell Migration and Collagen Reorganization on Mesenchymal Nonmuscle Cells , 2001 .

[83]  Maureen E. Taylor,et al.  An Extended Conformation of the Macrophage Mannose Receptor* , 2001, The Journal of Biological Chemistry.

[84]  R. Kalluri,et al.  Structural basis for the functions of endogenous angiogenesis inhibitors. , 2005, Cold Spring Harbor symposia on quantitative biology.

[85]  B. Leitinger Molecular Analysis of Collagen Binding by the Human Discoidin Domain Receptors, DDR1 and DDR2 , 2003, The Journal of Biological Chemistry.

[86]  L Meyaard,et al.  LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes. , 1997, Immunity.

[87]  M. Moroi,et al.  Analysis of the Interaction of Platelet Collagen Receptor Glycoprotein VI (GPVI) with Collagen , 2002, The Journal of Biological Chemistry.

[88]  J. Sixma,et al.  The role of collagen in thrombosis and hemostasis , 2004, Journal of thrombosis and haemostasis : JTH.

[89]  K. Horii,et al.  Structural basis for platelet collagen responses by the immune-type receptor glycoprotein VI. , 2006, Blood.

[90]  W. Weis,et al.  Structure of a C-type Carbohydrate Recognition Domain from the Macrophage Mannose Receptor* , 2000, The Journal of Biological Chemistry.

[91]  M. Nussenzweig,et al.  Crystal Structure of the Cysteine-Rich Domain of Mannose Receptor Complexed with a Sulfated Carbohydrate Ligand , 2000, The Journal of experimental medicine.

[92]  A. Persikov,et al.  Molecular structure of the collagen triple helix. , 2005, Advances in protein chemistry.

[93]  M. Moroi,et al.  Platelet glycoprotein VI: its structure and function. , 2004, Thrombosis research.

[94]  A. Pozzi,et al.  Integrin α1β1 Mediates a Unique Collagen-dependent Proliferation Pathway In Vivo , 1998, The Journal of cell biology.

[95]  R. Huber,et al.  Crystal structures of the membrane-binding C2 domain of human coagulation factor V , 1999, Nature.

[96]  C. Isacke,et al.  Identification and characterization of the endocytic transmembrane glycoprotein Endo180 as a novel collagen receptor. , 2003, Molecular biology of the cell.

[97]  T. Pawson,et al.  Discoidin Domain Receptor 1 Tyrosine Kinase Has an Essential Role in Mammary Gland Development , 2001, Molecular and Cellular Biology.

[98]  Hedvig Tordai,et al.  The second type II module from human matrix metalloproteinase 2: structure, function and dynamics , 1999 .

[99]  Shawn M. Sweeney,et al.  Angiogenesis in Collagen I Requires α2β1 Ligation of a GFP*GER Sequence and Possibly p38 MAPK Activation and Focal Adhesion Disassembly* , 2003, Journal of Biological Chemistry.

[100]  Zaverio M. Ruggeri,et al.  Platelets in atherothrombosis , 2002, Nature Medicine.