Accretion Disk Size Measurements of Active Galactic Nuclei Monitored by the Zwicky Transient Facility

We compile a sample of 92 active galactic nuclei (AGNs) at z < 0.75 with gri photometric light curves from the archival data of the Zwicky Transient Facility and measure the accretion disk sizes via continuum reverberation mapping. We employ Monte Carlo simulation tests to assess the influences of data sampling and broad emission lines and select out the sample with adequately high sampling cadences (3 days apart in average) and minimum contaminations of broad emission lines. The interband time delays of individual AGNs are calculated using the interpolated cross-correlation function, and then these delays are fitted with a generalized accretion disk model, in which interband time delays are a power function of wavelength, black hole mass, and luminosity. A Markov Chain Monte Carlo method is adopted to determine the best parameter values. Overall the interband time delays can be fitted with the τ ∝ λ 4/3 relation as predicted from a steady-state, optically thick, geometrically thin accretion disk; however, the yielded disk size is systematically larger than expected, although the ratio of the measured to theoretical disk sizes depends on using the emissivity- or responsivity-weighted disk radius. These results are broadly consistent with previous studies, all together raising a puzzle about the “standard” accretion disk model.

[1]  L. Ho,et al.  The Sloan Digital Sky Survey Reverberation Mapping Project: UV–Optical Accretion Disk Measurements with the Hubble Space Telescope , 2021, The Astrophysical Journal.

[2]  L. Ho,et al.  Accretion Disk Sizes from Continuum Reverberation Mapping of AGN Selected from the ZTF Survey , 2021, 2109.05036.

[3]  P. Hall,et al.  AGN STORM 2. I. First results: A Change in the Weather of Mrk 817 , 2021, The Astrophysical Journal.

[4]  J. Trump,et al.  Faint Active Galactic Nuclei Favor Unexpectedly Long Inter-band Time Lags , 2021, 2104.12327.

[5]  I. Papadakis,et al.  UV/Optical Disk Thermal Reverberation in Active Galactic Nuclei: An In-depth Study with an Analytic Prescription for Time-lag Spectra , 2020, 2011.08563.

[6]  W. Brandt,et al.  Intensive disc-reverberation mapping of Fairall 9: first year of Swift and LCO monitoring , 2020, Monthly Notices of the Royal Astronomical Society.

[7]  C. Morgan,et al.  Quasar Microlensing Variability Studies Favor Shallow Accretion Disk Temperature Profiles , 2020, The Astrophysical Journal.

[8]  L. Ho,et al.  Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. XI. Accretion Disk Reverberation Mapping of Mrk 142 , 2020, The Astrophysical Journal.

[9]  A. Markowitz,et al.  X-ray, UV, and optical time delays in the bright Seyfert galaxy Ark 120 with co-ordinated Swift and ground-based observations , 2020, Monthly Notices of the Royal Astronomical Society.

[10]  J. Frieman,et al.  Quasar Accretion Disk Sizes from Continuum Reverberation Mapping in the DES Standard-star Fields , 2018, The Astrophysical Journal Supplement Series.

[11]  R. B. Barreiro,et al.  Planck 2018 results , 2018, Astronomy & Astrophysics.

[12]  Jian-Min Wang,et al.  The Radius–Luminosity Relationship Depends on Optical Spectra in Active Galactic Nuclei , 2019, The Astrophysical Journal.

[13]  W. Bian,et al.  Calibration of the virial factor f in supermassive black hole masses of reverberation-mapped AGNs , 2019, Monthly Notices of the Royal Astronomical Society.

[14]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Science Objectives , 2019, Publications of the Astronomical Society of the Pacific.

[15]  W. Brandt,et al.  The First Swift Intensive AGN Accretion Disk Reverberation Mapping Survey , 2018, The Astrophysical Journal.

[16]  L. Ho,et al.  The Sloan Digital Sky Survey Reverberation Mapping Project: Accretion Disk Sizes from Continuum Lags , 2018, The Astrophysical Journal.

[17]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: System Overview, Performance, and First Results , 2018, Publications of the Astronomical Society of the Pacific.

[18]  Umaa Rebbapragada,et al.  The Zwicky Transient Facility: Data Processing, Products, and Archive , 2018, Publications of the Astronomical Society of the Pacific.

[19]  L. Ho,et al.  Supermassive Black Holes with High Accretion Rates in Active Galactic Nuclei. VIII. Structure of the Broad-line Region and Mass of the Central Black Hole in Mrk 142 , 2018, The Astrophysical Journal.

[20]  L. Ho,et al.  The QUEST–La Silla AGN Variability Survey: Connection between AGN Variability and Black Hole Physical Properties , 2018, The Astrophysical Journal.

[21]  D. N. Okhmat,et al.  Continuum Reverberation Mapping of the Accretion Disks in Two Seyfert 1 Galaxies , 2018, 1801.09692.

[22]  A. Myers,et al.  The Sloan Digital Sky Survey Quasar Catalog: Fourteenth data release , 2017, 1712.05029.

[23]  Martin P. Ward,et al.  X-ray/UV/optical variability of NGC 4593 with Swift: reprocessing of X-rays by an extended reprocessor , 2017, Monthly Notices of the Royal Astronomical Society.

[24]  N. E. Sommer,et al.  Quasar Accretion Disk Sizes from Continuum Reverberation Mapping from the Dark Energy Survey , 2017, The Astrophysical Journal.

[25]  C. Kochanek,et al.  Microlensing makes lensed quasar time delays significantly time variable , 2017, 1707.01908.

[26]  C. D. Laney,et al.  THE LICK AGN MONITORING PROJECT 2011: DYNAMICAL MODELING OF THE BROAD-LINE REGION IN Mrk 50 , 2012, The Astrophysical Journal.

[27]  K. Korista,et al.  Accretion Disk Reverberation with Hubble Space Telescope Observations of NGC 4593: Evidence for Diffuse Continuum Lags , 2017, 1712.04025.

[28]  P. Lira,et al.  The effect of nuclear gas distribution on the mass determination of supermassive black holes , 2017, 1709.05345.

[29]  S. Zucker,et al.  Methods of Reverberation Mapping. I. Time-lag Determination by Measures of Randomness , 2017, 1708.04477.

[30]  T. Treu,et al.  The Structure of the Broad-line Region in Active Galactic Nuclei. II. Dynamical Modeling of Data From the AGN10 Reverberation Mapping Campaign , 2017, 1705.02346.

[31]  C. Gaskell The case for cases B and C: intrinsic hydrogen line ratios of the broad-line region of active galactic nuclei, reddenings, and accretion disc sizes , 2015, 1512.09291.

[32]  H. Rix,et al.  Detection of Time Lags between Quasar Continuum Emission Bands Based On Pan-STARRS Light Curves , 2016, 1612.08747.

[33]  D. N. Okhmat,et al.  SPACE TELESCOPE AND OPTICAL REVERBERATION MAPPING PROJECT.VI. REVERBERATING DISK MODELS FOR NGC 5548 , 2016, 1611.06051.

[34]  Keith Horne,et al.  Accretion disc time lag distributions: applying CREAM to simulated AGN light curves , 2015, 1511.06162.

[35]  G. Richards,et al.  Are the variability properties of the Kepler AGN light curves consistent with a damped random walk , 2015, 1505.00360.

[36]  Bradley M. Peterson,et al.  Measuring the Masses of Supermassive Black Holes , 2014 .

[37]  Brendon J. Brewer,et al.  Modelling reverberation mapping data – I. Improved geometric and dynamical models and comparison with cross-correlation results , 2014, 1407.2941.

[38]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[39]  O. Blaes,et al.  The characteristic blue spectra of accretion disks in quasars as uncovered in the infrared , 2008, Nature.

[40]  G. Richards,et al.  Biases in Virial Black Hole Masses: An SDSS Perspective , 2007, 0709.3098.

[41]  H. Winkler,et al.  Testing thermal reprocessing in active galactic nuclei accretion discs , 2007, 0706.1464.

[42]  B. Peterson,et al.  Systematic effects in measurement of black hole masses by emission-line reverberation of active galactic nuclei: Eddington ratio and inclination , 2006, astro-ph/0603460.

[43]  C. Kochanek,et al.  Microlensing of the Lensed Quasar SDSS 0924+0219 , 2006, astro-ph/0601523.

[44]  B. M. Peterson,et al.  Central Masses and Broad-Line Region Sizes of Active Galactic Nuclei. II. A Homogeneous Analysis of a Large Reverberation-Mapping Database , 2004, astro-ph/0407299.

[45]  C. Kochanek Quantitative Interpretation of Quasar Microlensing Light Curves , 2003, astro-ph/0307422.

[46]  G. Bruzual,et al.  Stellar population synthesis at the resolution of 2003 , 2003, astro-ph/0309134.

[47]  M. Gierliński,et al.  Black hole accretion discs: reality confronts theory , 2003, astro-ph/0307333.

[48]  E. Szuszkiewicz,et al.  Emergent Spectra from Slim Accretion Disks in Active Galactic Nuclei , 1999 .

[49]  Jian-Min Wang,et al.  Self-similar Solution of Optically Thick Advection-dominated Flows , 1999 .

[50]  B. Peterson,et al.  A NEW DIRECT METHOD FOR MEASURING THE HUBBLE CONSTANT FROM REVERBERATING ACCRETION DISCS IN ACTIVE GALAXIES , 1998, astro-ph/9811278.

[51]  Anuradha Koratkar,et al.  The Ultraviolet and Optical Continuum Emission in Active Galactic Nuclei: The Status of Accretion Disks , 1999 .

[52]  Bradley M. Peterson,et al.  On Uncertainties in Cross‐Correlation Lags and the Reality of Wavelength‐dependent Continuum Lags in Active Galactic Nuclei , 1998, astro-ph/9802103.

[53]  D. Lin,et al.  THEORY OF ACCRETION DISKS II: Application to Observed Systems , 1996 .

[54]  Bradley M. Peterson,et al.  REVERBERATION MAPPING OF ACTIVE GALACTIC NUCLEI , 1993 .

[55]  Y. Pei,et al.  Interstellar dust from the Milky Way to the Magellanic Clouds , 1992 .

[56]  T. Boroson,et al.  The Emission-Line Properties of Low-Redshift Quasi-stellar Objects , 1992 .

[57]  G. Neugebauer,et al.  Continuum energy distribution of quasars: Shapes and origins , 1989 .

[58]  A. Kinney,et al.  The Lyman Edge Test of the Quasar Emission Mechanism , 1989 .

[59]  J. Lasota,et al.  Slim Accretion Disks , 1988 .

[60]  B. Peterson,et al.  The Accuracy of Cross-Correlation Estimates of Quasar Emission-Line Region Sizes , 1987 .

[61]  C. M. Gaskell,et al.  Line variations in quasars and Seyfert galaxies , 1986 .

[62]  H. Netzer,et al.  The intrinsic spectra of quasars , 1979 .

[63]  C. McKee,et al.  Are quasars dusty , 1974 .