Analysis of the structure and function of the LYK cluster of Medicago truncatula A17 and R108.

[1]  Kana Miyata,et al.  OsCERK2/OsRLK10, a homolog of OsCERK1, has a potential role for chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. , 2022, Plant biotechnology.

[2]  Ertao Wang,et al.  CERK1, more than a co-receptor in plant-microbe interactions. , 2022, The New phytologist.

[3]  N. Pauly,et al.  A newly-evolved chimeric lysin motif receptor-like kinase in Medicago truncatula spp. tricycla R108 extends its Rhizobia symbiotic partnership , 2021, bioRxiv.

[4]  P. Azadi,et al.  Kinetic proofreading of lipochitooligosaccharides determines signal activation of symbiotic plant receptors , 2021, Proceedings of the National Academy of Sciences.

[5]  K. Mysore,et al.  Delineating the Tnt1 Insertion Landscape of the Model Legume Medicago truncatula cv. R108 at the Hi-C Resolution Using a Chromosome-Length Genome Assembly , 2021, International journal of molecular sciences.

[6]  S. Radutoiu,et al.  Understanding Nod factor signalling paves the way for targeted engineering in legumes and non-legumes. , 2021, Current opinion in plant biology.

[7]  S. Fort,et al.  Ligand-recognizing motifs in plant LysM receptors are major determinants of specificity , 2020, Science.

[8]  T. Bisseling,et al.  Duplication of Symbiotic Lysin Motif Receptors Predates the Evolution of Nitrogen-Fixing Nodule Symbiosis , 2020, Plant Physiology.

[9]  C. Gough,et al.  Expression and function of the Medicago truncatula lysin motif receptor‐like kinase ( LysM ‐ RLK ) gene family in the legume–rhizobia symbiosis , 2020 .

[10]  M. Parniske,et al.  LCO Receptors Involved in Arbuscular Mycorrhiza Are Functional for Rhizobia Perception in Legumes , 2019, Current Biology.

[11]  Kathryn M. Jones,et al.  Sinorhizobium meliloti succinylated high‐molecular‐weight succinoglycan and the Medicago truncatula LysM receptor‐like kinase MtLYK10 participate independently in symbiotic infection , 2019, The Plant journal : for cell and molecular biology.

[12]  S. Fort,et al.  A combination of chitooligosaccharide and lipochitooligosaccharide recognition promotes arbuscular mycorrhizal associations in Medicago truncatula , 2019, Nature Communications.

[13]  S. Ahnert,et al.  NODULE INCEPTION Recruits the Lateral Root Developmental Program for Symbiotic Nodule Organogenesis in Medicago truncatula , 2019, Current Biology.

[14]  M. Rubio,et al.  CRISPR/Cas9 knockout of leghemoglobin genes in Lotus japonicus uncovers their synergistic roles in symbiotic nitrogen fixation. , 2019, The New phytologist.

[15]  Virginie Puech-Pagès,et al.  The Medicago truncatula LysM receptor-like kinase LYK9 plays a dual role in immunity and the arbuscular mycorrhizal symbiosis. , 2019, The New phytologist.

[16]  F. Frugier,et al.  Unraveling new molecular players involved in the autoregulation of nodulation in Medicago truncatula , 2019, Journal of experimental botany.

[17]  J. Gouzy,et al.  Whole-genome landscape of Medicago truncatula symbiotic genes , 2018, Nature Plants.

[18]  L. Cottret,et al.  LysM Receptor-Like Kinase and LysM Receptor-Like Protein Families: An Update on Phylogeny and Functional Characterization , 2018, Front. Plant Sci..

[19]  Huanming Yang,et al.  Phylogenomics reveals multiple losses of nitrogen-fixing root nodule symbiosis , 2018, Science.

[20]  J. Stougaard,et al.  Epidermal LysM receptor ensures robust symbiotic signalling in Lotus japonicus , 2018, eLife.

[21]  S. Smit,et al.  Comparative genomics of the nonlegume Parasponia reveals insights into evolution of nitrogen-fixing rhizobium symbioses , 2018, Proceedings of the National Academy of Sciences.

[22]  O. Shtark,et al.  Receptor-Like Kinase LYK9 in Pisum sativum L. Is the CERK1-Like Receptor that Controls Both Plant Immunity and AM Symbiosis Development , 2017, International journal of molecular sciences.

[23]  K. Mysore,et al.  Medicago truncatula: Genetic and Genomic Resources. , 2017, Current protocols in plant biology.

[24]  J. Stougaard,et al.  Receptor-mediated chitin perception in legume roots is functionally separable from Nod factor perception , 2017, Proceedings of the National Academy of Sciences.

[25]  Kana Miyata,et al.  The rice LysM receptor-like kinase OsCERK1 is required for the perception of short-chain chitin oligomers in arbuscular mycorrhizal signaling. , 2017, The New phytologist.

[26]  J. Miller,et al.  Exploring structural variation and gene family architecture with De Novo assemblies of 15 Medicago genomes , 2017, BMC Genomics.

[27]  N. Provart,et al.  Nod factors potentiate auxin signaling for transcriptional regulation and lateral root formation in Medicago truncatula , 2017, Journal of experimental botany.

[28]  M. Andrews,et al.  Specificity in Legume-Rhizobia Symbioses , 2016, International journal of molecular sciences.

[29]  O. Burlet-Schiltz,et al.  LYR3, a high‐affinity LCO‐binding protein of Medicago truncatula, interacts with LYK3, a key symbiotic receptor , 2016, FEBS letters.

[30]  Alireza F. Siahpirani,et al.  Deep Sequencing of the Medicago truncatula Root Transcriptome Reveals a Massive and Early Interaction between Nodulation Factor and Ethylene Signals1[OPEN] , 2015, Plant Physiology.

[31]  Kabin Xie,et al.  Boosting CRISPR/Cas9 multiplex editing capability with the endogenous tRNA-processing system , 2015, Proceedings of the National Academy of Sciences.

[32]  K. Akiyama,et al.  The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. , 2014, Plant & cell physiology.

[33]  Marten Postma,et al.  Nod Factor Receptors Form Heteromeric Complexes and Are Essential for Intracellular Infection in Medicago Nodules[W] , 2014, Plant Cell.

[34]  G. Coruzzi,et al.  Comparative Phylogenomics Uncovers the Impact of Symbiotic Associations on Host Genome Evolution , 2014, PLoS genetics.

[35]  T. Bisseling,et al.  Evolution of a symbiotic receptor through gene duplications in the legume-rhizobium mutualism. , 2014, The New phytologist.

[36]  A. Imberty,et al.  Lipo-chitooligosaccharidic symbiotic signals are recognized by LysM receptor-like kinase LYR3 in the legume Medicago truncatula. , 2013, ACS chemical biology.

[37]  R. Geurts,et al.  Interaction of Medicago truncatula Lysin Motif Receptor-Like Kinases, NFP and LYK3, Produced in Nicotiana benthamiana Induces Defence-Like Responses , 2013, PloS one.

[38]  F. de Billy,et al.  Contribution of NFP LysM Domains to the Recognition of Nod Factors during the Medicago truncatula/Sinorhizobium meliloti Symbiosis , 2011, PloS one.

[39]  Alvaro J. González,et al.  The Medicago Genome Provides Insight into the Evolution of Rhizobial Symbioses , 2011, Nature.

[40]  Martin Parniske,et al.  Arbuscular mycorrhiza: the mother of plant root endosymbioses , 2008, Nature Reviews Microbiology.

[41]  T. Bisseling,et al.  Medicago LYK3, an Entry Receptor in Rhizobial Nodulation Factor Signaling1[W] , 2007, Plant Physiology.

[42]  P. Rougé,et al.  The Medicago truncatula Lysine Motif-Receptor-Like Kinase Gene Family Includes NFP and New Nodule-Expressed Genes1[W] , 2006, Plant Physiology.

[43]  S. Shaw,et al.  Six nonnodulating plant mutants defective for Nod factor-induced transcriptional changes associated with the legume-rhizobia symbiosis. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[44]  J. Willemse,et al.  LysM Domain Receptor Kinases Regulating Rhizobial Nod Factor-Induced Infection , 2003, Science.

[45]  S. Tabata,et al.  Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases , 2003, Nature.

[46]  D. Barker,et al.  Efficient transformation of Medicago truncatula cv. Jemalong using the hypervirulent Agrobacterium tumefaciens strain AGL1 , 2003, Plant Cell Reports.

[47]  C. Vance,et al.  Legumes: Importance and Constraints to Greater Use , 2003, Plant Physiology.

[48]  M. Holsters,et al.  Nod factor structures, responses, and perception during initiation of nodule development. , 2002, Glycobiology.

[49]  G. Bécard,et al.  Agrobacterium rhizogenes-transformed roots of Medicago truncatula for the study of nitrogen-fixing and endomycorrhizal symbiotic associations. , 2001, Molecular plant-microbe interactions : MPMI.

[50]  F. de Billy,et al.  Rhizobium meliloti lipooligosaccharide nodulation factors: different structural requirements for bacterial entry into target root hair cells and induction of plant symbiotic developmental responses. , 1994, The Plant cell.

[51]  OUP accepted manuscript , 2022, Plant Physiology.

[52]  L. Tran,et al.  CRISPR/Cas9-Based Gene Editing in Soybean. , 2020, Methods in molecular biology.

[53]  Zuhua He,et al.  The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. , 2015, The Plant journal : for cell and molecular biology.

[54]  H. Kouchi,et al.  From defense to symbiosis: limited alterations in the kinase domain of LysM receptor-like kinases are crucial for evolution of legume-Rhizobium symbiosis. , 2011, The Plant journal : for cell and molecular biology.