Limiting Measure of Lee–Yang Zeros for the Cayley Tree

This paper is devoted to an in-depth study of the limiting measure of Lee–Yang zeroes for the Ising Model on the Cayley Tree. We build on previous works of Müller-Hartmann and Zittartz (Z Phys B 22:59, 1975), Müller-Hartmann (Z Phys B 27:161–168, 1977), Barata and Marchetti (J Stat Phys 88:231–268, 1997) and Barata and Goldbaum (J Stat Phys 103:857–891, 2001), to determine the support of the limiting measure, prove that the limiting measure is not absolutely continuous with respect to Lebesgue measure, and determine the pointwise dimension of the measure at Lebesgue a.e. point on the unit circle and every temperature. The latter is related to the critical exponents for the phase transitions in the model as one crosses the unit circle at Lebesgue a.e. point, providing a global version of the “phase transition of continuous order” discovered by Müller-Hartmann–Zittartz. The key techniques are from dynamical systems because there is an explicit formula for the Lee–Yang zeros of the finite Cayley Tree of level n in terms of the n-th iterate of an expanding Blaschke Product. A subtlety arises because the conjugacies between Blaschke Products at different parameter values are not absolutely continuous.

[1]  Han Peters,et al.  Location of zeros for the partition function of the Ising model on bounded degree graphs , 2018, ArXiv.

[2]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. II. Lattice Gas and Ising Model , 1952 .

[3]  Y. Ilyashenko,et al.  Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins , 2008 .

[4]  Flexibility of exponents for expanding maps on a circle , 2017, 1704.00832.

[5]  T. D. Lee,et al.  Statistical Theory of Equations of State and Phase Transitions. I. Theory of Condensation , 1952 .

[6]  A. Zdunik Parabolic orbifolds and the dimension of the maximal measure for rational maps , 1990 .

[7]  M. Pollicott,et al.  Controlling the statistical properties of expanding maps , 2016, 1603.07762.

[8]  J. Zittartz,et al.  Phase transitions of continuous order: Ising model on a Cayley tree , 1975 .

[9]  A. Trombettoni,et al.  Yang–Lee zeros of the Yang–Lee model , 2017, 1708.06444.

[10]  J. Milnor Dynamics in one complex variable , 2000 .

[11]  A. Manning A relation between Lyapunov exponents, Hausdorff dimension and entropy , 1981, Ergodic Theory and Dynamical Systems.

[12]  C. McMullen Dynamics on the unit disk: Short geodesics and simple cycles , 2010 .

[13]  David Ruelle,et al.  Extension of the Lee-Yang Circle Theorem , 1971 .

[14]  Theory of the Ising model on a Cayley tree , 1977 .

[15]  David Ruelle,et al.  An inequality for the entropy of differentiable maps , 1978 .

[16]  L. Bers,et al.  Holomorphic families of injections , 1986 .

[17]  A. Erchenko Flexibility of Lyapunov exponents for expanding circle maps , 2019, Discrete & Continuous Dynamical Systems - A.

[18]  Oleg Ivrii The geometry of the Weil-Petersson metric in complex dynamics , 2015, 1503.02590.

[19]  L. Young Large deviations in dynamical systems , 1990 .

[20]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[21]  Michael Shub,et al.  Endomorphisms of compact differentiable manifolds , 1969 .

[22]  R. Mañé,et al.  The hausdorff dimension of invariant probabilities of rational maps , 1988 .

[23]  Michael E. Fisher,et al.  Yang-Lee Edge Singularity and ϕ 3 Field Theory , 1978 .

[24]  Lai-Sang Young,et al.  Ergodic Theory of Differentiable Dynamical Systems , 1995 .

[25]  M. Shub,et al.  Expanding endomorphisms of the circle revisited , 1985, Ergodic Theory and Dynamical Systems.

[26]  D. Marchetti,et al.  Griffiths' singularities in diluted ising models on the Cayley tree , 1997 .

[27]  Pavel Bleher,et al.  Lee-Yang zeros for DHL and 2D rational dynamics, I. Foliation of the physical cylinder , 2010, 1009.4691.

[28]  M. Biskup,et al.  Partition Function Zeros at First-Order Phase Transitions: A General Analysis , 2003, math-ph/0304007.

[29]  Yuri Kifer,et al.  Large deviations in dynamical systems and stochastic processes , 1990 .

[30]  M. Shub,et al.  Expanding maps of the circle rerevisited: positive Lyapunov exponents in a rich family , 2006, Ergodic Theory and Dynamical Systems.

[31]  J. Milnor Fubini Foiled: Katok’s Paradoxical Example in Measure Theory , 1997 .

[32]  L. Hove Quelques Propriétés Générales De L'intégrale De Configuration D'un Système De Particules Avec Interaction , 1949 .

[33]  K. Krzyżewski Some results on expanding mappings , 2019 .

[34]  J. Cardy,et al.  Conformal invariance and the Yang-Lee edge singularity in two dimensions. , 1985, Physical review letters.