Terahertz quantum cascade lasers: Fabrication, characterization, and doping effect

The terahertz gap, lying roughly between 300GHz (0.3THz) and 30THz in the electromagnetic spectrum, exists because the frequencies generated by semiconductor devices based on transistors and lasers do not overlap. Generation of coherent terahertz radiation has traditionally involved either extending electronic techniques to higher frequencies or extending photonic sources to longer wavelengths. In both cases, the efficiency drops rapidly as the frequency approaches the terahertz region. We recently fabricated GaAs∕AlGaAs quantum cascade lasers, in which a high-confinement metal-metal waveguide was employed and fabricated using In–Au metallic bonding technique. The devices demonstrated lasing operation at a wavelength of around 104.6μm (or about 2.9THz in frequency). In this article, we first present the fabrication and electrical and optical characterizations of the terahertz quantum cascade lasers. We then characterized a set of terahertz quantum cascade lasers with otherwise identical device parameters ...

[1]  Qing Hu,et al.  Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. , 2005, Optics express.

[2]  Qing Hu,et al.  Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators , 2005 .

[3]  Edmund H. Linfield,et al.  2.9THz quantum cascade lasers operating up to 70K in continuous wave , 2004 .

[4]  A. Tredicucci,et al.  Single-mode operation of terahertz quantum cascade lasers with distributed feedback resonators , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[5]  Paul Harrison,et al.  Simulation and design of GaN/AlGaN far-infrared (λ∼34 μm) quantum-cascade laser , 2004 .

[6]  Qing Hu,et al.  Continuous-wave operation of terahertz quantum-cascade lasers above liquid-nitrogen temperature , 2004 .

[7]  Qing Hu,et al.  Resonant-phonon terahertz quantum-cascade laser operating at 2.1 THz (λ≃141 µm) , 2004 .

[8]  Qing Hu,et al.  Importance of electron-impurity scattering for electron transport in terahertz quantum-cascade lasers , 2004 .

[9]  Qing Hu,et al.  Terahertz quantum-cascade laser operating up to 137 K , 2003 .

[10]  E. Linfield,et al.  Population inversion by resonant magnetic confinement in terahertz quantum-cascade lasers , 2003 .

[11]  Qing Hu,et al.  Terahertz quantum-cascade laser at λ≈100 μm using metal waveguide for mode confinement , 2003 .

[12]  Qing Hu,et al.  Analysis of transport properties of tetrahertz quantum cascade lasers , 2003 .

[13]  Giles Davies,et al.  Far-infrared (λ≃87 μm) bound-to-continuum quantum-cascade lasers operating up to 90 K , 2003 .

[14]  Carlo Sirtori,et al.  High-performance continuous-wave operation of superlattice terahertz quantum-cascade lasers , 2003 .

[15]  Paul Harrison,et al.  Mechanisms of temperature performance degradation in terahertz quantum-cascade lasers , 2003 .

[16]  R. Hey,et al.  Lasing properties of GaAs/(Al,Ga)As quantum-cascade lasers as a function of injector doping density , 2003 .

[17]  Z. Ikonic,et al.  Self-consistent scattering model of carrier dynamics in GaAs-AlGaAs terahertz quantum-cascade lasers , 2003, IEEE Photonics Technology Letters.

[18]  David A. Ritchie,et al.  Low-threshold terahertz quantum-cascade lasers , 2002 .

[19]  E. Linfield,et al.  Terahertz semiconductor-heterostructure laser , 2002, Nature.

[20]  F. Rossi,et al.  Nature of charge transport in quantum-cascade lasers. , 2001, Physical review letters.

[21]  M. Beck,et al.  Measurement of far-infrared waveguide loss using a multisection single-pass technique , 2001 .

[22]  A. Springthorpe,et al.  Studies and modeling of growth uniformity in molecular beam epitaxy , 1991 .