Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs
暂无分享,去创建一个
Erik Jan van Leeuwen | Piotr Sankowski | Michal Pilipczuk | Marcin Pilipczuk | P. Sankowski | Marcin Pilipczuk | E. J. V. Leeuwen | Michal Pilipczuk
[1] Stefan Kratsch,et al. Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal , 2011, TALG.
[2] Philip N. Klein,et al. A polynomial-time approximation scheme for planar multiway cut , 2012, SODA.
[3] Fabrizio Grandoni,et al. Steiner Tree Approximation via Iterative Randomized Rounding , 2013, JACM.
[4] Rolf Niedermeier,et al. Invitation to Fixed-Parameter Algorithms , 2006 .
[5] David R. Karger,et al. Approximating s – t Minimum Cuts in ~ O(n 2 ) Time , 2007 .
[6] Philip N. Klein,et al. A Fully Dynamic Approximation Scheme for Shortest Paths in Planar Graphs , 1998, Algorithmica.
[7] Robin Thomas,et al. Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.
[8] Lance Fortnow,et al. Infeasibility of instance compression and succinct PCPs for NP , 2011, J. Comput. Syst. Sci..
[9] David Eisenstat,et al. An efficient polynomial-time approximation scheme for Steiner forest in planar graphs , 2012, SODA.
[10] Nikhil Srivastava,et al. Twice-ramanujan sparsifiers , 2008, STOC '09.
[11] Erik Jan van Leeuwen,et al. Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[12] Jianer Chen,et al. An O *(1.84 k ) Parameterized Algorithm for the Multiterminal Cut Problem , 2013, FCT.
[13] Stefan Kratsch,et al. Representative Sets and Irrelevant Vertices: New Tools for Kernelization , 2011, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
[14] DobkinDavid,et al. On sparse spanners of weighted graphs , 1993 .
[15] Philip N. Klein,et al. Multiple-source shortest paths in planar graphs , 2005, SODA '05.
[16] Fedor V. Fomin,et al. Exact exponential algorithms , 2013, CACM.
[17] Philip N. Klein,et al. Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..
[18] Philip N. Klein,et al. A Subset Spanner for Planar Graphs, with Application to Subset Tsp , 2022 .
[19] Richard M. Karp,et al. On the Computational Complexity of Combinatorial Problems , 1975, Networks.
[20] Ioan Todinca,et al. Treewidth of planar graphs: connections with duality , 2001, Electron. Notes Discret. Math..
[21] David P. Dobkin,et al. On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..
[22] Erik D. Demaine,et al. Linearity of grid minors in treewidth with applications through bidimensionality , 2008, Comb..
[23] David Eisenstat,et al. Linear-time algorithms for max flow and multiple-source shortest paths in unit-weight planar graphs , 2013, STOC '13.
[24] Erik Jan van Leeuwen,et al. Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs , 2013, STACS.
[25] David Eppstein,et al. Sparsification—a technique for speeding up dynamic graph algorithms , 1997, JACM.
[26] Karsten Weihe,et al. The vertex-disjoint menger problem in planar graphs , 1997, SODA '93.
[27] Michael R. Fellows,et al. On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..
[28] Robert Krauthgamer,et al. Mimicking Networks and Succinct Representations of Terminal Cuts , 2013, SODA.
[29] E EricksonRanel,et al. Send-and-Split Method for Minimum-Concave-Cost Network Flows , 1987 .
[30] Pan Peng,et al. Improved Guarantees for Vertex Sparsification in Planar Graphs , 2017, ESA.
[31] Philip N. Klein,et al. Solving Planar k -Terminal Cut in $O(n^{c \sqrt{k}})$ Time , 2012, ICALP.
[32] R. Ravi,et al. When Trees Collide: An Approximation Algorithm for the Generalized Steiner Problem on Networks , 1995, SIAM J. Comput..
[33] Piotr Sankowski,et al. Dynamic Plane Transitive Closure , 2007, ESA.
[34] Jianer Chen,et al. An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem , 2007, Algorithmica.
[35] Andrew Drucker,et al. New Limits to Classical and Quantum Instance Compression , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.
[36] Mohammad Taghi Hajiaghayi,et al. Approximation Schemes for Steiner Forest on Planar Graphs and Graphs of Bounded Treewidth , 2009, JACM.
[37] Robert Krauthgamer,et al. Refined Vertex Sparsifiers of Planar Graphs , 2020, SIAM J. Discret. Math..
[38] Dimitrios M. Thilikos,et al. Bidimensionality and kernels , 2010, SODA '10.
[39] David Eppstein,et al. Separator Based Sparsification. I. Planary Testing and Minimum Spanning Trees , 1996, J. Comput. Syst. Sci..
[40] Rolf Niedermeier,et al. VERTEX COVER—AN ILLUSTRATIVE EXAMPLE , 2006 .
[41] Naomi Nishimura,et al. Characterizing Multiterminal Flow Networks and Computing Flows in Networks of Small Treewidth , 1998, J. Comput. Syst. Sci..
[42] Russell Impagliazzo,et al. Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).
[43] Clyde L. Monma,et al. Send-and-Split Method for Minimum-Concave-Cost Network Flows , 1987, Math. Oper. Res..
[44] Erik Jan van Leeuwen,et al. A deterministic polynomial kernel for Odd Cycle Transversal and Vertex Multiway Cut in planar graphs , 2018, STACS.
[45] Dimitrios M. Thilikos,et al. (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.
[46] Sairam Subramanian. A Fully Dynamic Data Structure for Reachability in Planar Digraphs , 1993, ESA.
[47] Erik D. Demaine,et al. Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.
[48] Dániel Marx,et al. A Tight Lower Bound for Planar Multiway Cut with Fixed Number of Terminals , 2012, ICALP.
[49] Jianer Chen,et al. An O(1.84k) parameterized algorithm for the multiterminal cut problem , 2013, Inf. Process. Lett..
[50] Glencora Borradaile,et al. Polynomial-Time Approximation Schemes for Subset-Connectivity Problems in Bounded-Genus Graphs , 2009, STACS.
[51] Karol Borsuk,et al. Sur les rétractes , 1931 .
[52] Brenda S. Baker,et al. Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).
[53] Mihalis Yannakakis,et al. The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..
[54] Frank Harary,et al. Graph Theory , 2016 .
[55] Michal Pilipczuk,et al. On Subexponential Parameterized Algorithms for Steiner Tree and Directed Subset TSP on Planar Graphs , 2017, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).
[56] Klaus Weihrauch,et al. The computational complexity of some julia sets , 2002, STOC '03.
[57] Michael R. Fellows,et al. Parameterized Complexity , 1998 .
[58] Jose Augusto Ramos Soares,et al. Graph Spanners: a Survey , 1992 .
[59] Ondrej Suchý. Extending the Kernel for Planar Steiner Tree to the Number of Steiner Vertices , 2015, IPEC.
[60] Jesper Nederlof. Fast Polynomial-Space Algorithms Using Möbius Inversion: Improving on Steiner Tree and Related Problems , 2009, ICALP.
[61] Dimitrios M. Thilikos,et al. Catalan structures and dynamic programming in H-minor-free graphs , 2008, SODA '08.
[62] Siamak Tazari,et al. Faster approximation schemes and parameterized algorithms on (odd-)H-minor-free graphs , 2012, Theor. Comput. Sci..
[63] David Eppstein,et al. Separator-Based Sparsification II: Edge and Vertex Connectivity , 1999, SIAM J. Comput..
[64] David S. Johnson,et al. The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.
[65] R. Ravi,et al. When trees collide: an approximation algorithm for the generalized Steiner problem on networks , 1991, STOC '91.
[66] Marshall W. Bern,et al. The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..
[67] Piotr Sankowski,et al. Improved algorithms for min cut and max flow in undirected planar graphs , 2011, STOC '11.
[68] Mikkel Thorup,et al. Rounding algorithms for a geometric embedding of minimum multiway cut , 1999, STOC '99.
[69] Erik D. Demaine,et al. The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..
[70] T. C. Hu,et al. Multi-Terminal Network Flows , 1961 .
[71] Dániel Marx,et al. Data Reduction and Problem Kernels (Dagstuhl Seminar 12241) , 2012, Dagstuhl Reports.
[72] Yoshio Okamoto,et al. On Problems as Hard as CNF-SAT , 2011, 2012 IEEE 27th Conference on Computational Complexity.
[73] Dániel Marx,et al. Parameterized graph separation problems , 2004, Theor. Comput. Sci..
[74] Saket Saurabh,et al. Kernelization Lower Bounds Through Colors and IDs , 2014, ACM Trans. Algorithms.
[75] Philip N. Klein,et al. An O(n log n) approximation scheme for Steiner tree in planar graphs , 2009, TALG.