Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs

We propose polynomial-time algorithms that sparsify planar and bounded-genus graphs while preserving optimal or near-optimal solutions to Steiner problems. Our main contribution is a polynomial-time algorithm that, given an unweighted undirected graph G embedded on a surface of genus g and a designated face f bounded by a simple cycle of length k, uncovers a set F ⊆ E(G) of size polynomial in g and k that contains an optimal Steiner tree for any set of terminals that is a subset of the vertices of f. We apply this general theorem to prove that: — Given an unweighted graph G embedded on a surface of genus g and a terminal set S⊆ V(G), one can in polynomial time find a set F ⊆ E(G) that contains an optimal Steiner tree T for S and that has size polynomial in g and |E(T)|. — An analogous result holds for an optimal Steiner forest for a set S of terminal pairs. — Given an unweighted planar graph G and a terminal set S⊆ V(G), one can in polynomial time find a set F ⊆ E(G) that contains an optimal (edge) multiway cut C separating S (i.e., a cutset that intersects any path with endpoints in different terminals from S) and that has size polynomial in |C|. In the language of parameterized complexity, these results imply the first polynomial kernels for Steiner Tree and Steiner Forest on planar and bounded-genus graphs (parameterized by the size of the tree and forest, respectively) and for (Edge) Multiway Cut on planar graphs (parameterized by the size of the cutset). Additionally, we obtain a weighted variant of our main contribution: a polynomial-time algorithm that, given an undirected plane graph G with positive edge weights, a designated face f bounded by a simple cycle of weight w(f), and an accuracy parameter ε > 0, uncovers a set F ⊆ E(G) of total weight at most poly(ε-1 ) w(f) that, for any set of terminal pairs that lie on f, contains a Steiner forest within additive error ε w(f) from the optimal Steiner forest.

[1]  Stefan Kratsch,et al.  Compression via Matroids: A Randomized Polynomial Kernel for Odd Cycle Transversal , 2011, TALG.

[2]  Philip N. Klein,et al.  A polynomial-time approximation scheme for planar multiway cut , 2012, SODA.

[3]  Fabrizio Grandoni,et al.  Steiner Tree Approximation via Iterative Randomized Rounding , 2013, JACM.

[4]  Rolf Niedermeier,et al.  Invitation to Fixed-Parameter Algorithms , 2006 .

[5]  David R. Karger,et al.  Approximating s – t Minimum Cuts in ~ O(n 2 ) Time , 2007 .

[6]  Philip N. Klein,et al.  A Fully Dynamic Approximation Scheme for Shortest Paths in Planar Graphs , 1998, Algorithmica.

[7]  Robin Thomas,et al.  Quickly Excluding a Planar Graph , 1994, J. Comb. Theory, Ser. B.

[8]  Lance Fortnow,et al.  Infeasibility of instance compression and succinct PCPs for NP , 2011, J. Comput. Syst. Sci..

[9]  David Eisenstat,et al.  An efficient polynomial-time approximation scheme for Steiner forest in planar graphs , 2012, SODA.

[10]  Nikhil Srivastava,et al.  Twice-ramanujan sparsifiers , 2008, STOC '09.

[11]  Erik Jan van Leeuwen,et al.  Network Sparsification for Steiner Problems on Planar and Bounded-Genus Graphs , 2013, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.

[12]  Jianer Chen,et al.  An O *(1.84 k ) Parameterized Algorithm for the Multiterminal Cut Problem , 2013, FCT.

[13]  Stefan Kratsch,et al.  Representative Sets and Irrelevant Vertices: New Tools for Kernelization , 2011, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[14]  DobkinDavid,et al.  On sparse spanners of weighted graphs , 1993 .

[15]  Philip N. Klein,et al.  Multiple-source shortest paths in planar graphs , 2005, SODA '05.

[16]  Fedor V. Fomin,et al.  Exact exponential algorithms , 2013, CACM.

[17]  Philip N. Klein,et al.  Faster Shortest-Path Algorithms for Planar Graphs , 1997, J. Comput. Syst. Sci..

[18]  Philip N. Klein,et al.  A Subset Spanner for Planar Graphs, with Application to Subset Tsp , 2022 .

[19]  Richard M. Karp,et al.  On the Computational Complexity of Combinatorial Problems , 1975, Networks.

[20]  Ioan Todinca,et al.  Treewidth of planar graphs: connections with duality , 2001, Electron. Notes Discret. Math..

[21]  David P. Dobkin,et al.  On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..

[22]  Erik D. Demaine,et al.  Linearity of grid minors in treewidth with applications through bidimensionality , 2008, Comb..

[23]  David Eisenstat,et al.  Linear-time algorithms for max flow and multiple-source shortest paths in unit-weight planar graphs , 2013, STOC '13.

[24]  Erik Jan van Leeuwen,et al.  Subexponential-Time Parameterized Algorithm for Steiner Tree on Planar Graphs , 2013, STACS.

[25]  David Eppstein,et al.  Sparsification—a technique for speeding up dynamic graph algorithms , 1997, JACM.

[26]  Karsten Weihe,et al.  The vertex-disjoint menger problem in planar graphs , 1997, SODA '93.

[27]  Michael R. Fellows,et al.  On problems without polynomial kernels , 2009, J. Comput. Syst. Sci..

[28]  Robert Krauthgamer,et al.  Mimicking Networks and Succinct Representations of Terminal Cuts , 2013, SODA.

[29]  E EricksonRanel,et al.  Send-and-Split Method for Minimum-Concave-Cost Network Flows , 1987 .

[30]  Pan Peng,et al.  Improved Guarantees for Vertex Sparsification in Planar Graphs , 2017, ESA.

[31]  Philip N. Klein,et al.  Solving Planar k -Terminal Cut in $O(n^{c \sqrt{k}})$ Time , 2012, ICALP.

[32]  R. Ravi,et al.  When Trees Collide: An Approximation Algorithm for the Generalized Steiner Problem on Networks , 1995, SIAM J. Comput..

[33]  Piotr Sankowski,et al.  Dynamic Plane Transitive Closure , 2007, ESA.

[34]  Jianer Chen,et al.  An Improved Parameterized Algorithm for the Minimum Node Multiway Cut Problem , 2007, Algorithmica.

[35]  Andrew Drucker,et al.  New Limits to Classical and Quantum Instance Compression , 2012, 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science.

[36]  Mohammad Taghi Hajiaghayi,et al.  Approximation Schemes for Steiner Forest on Planar Graphs and Graphs of Bounded Treewidth , 2009, JACM.

[37]  Robert Krauthgamer,et al.  Refined Vertex Sparsifiers of Planar Graphs , 2020, SIAM J. Discret. Math..

[38]  Dimitrios M. Thilikos,et al.  Bidimensionality and kernels , 2010, SODA '10.

[39]  David Eppstein,et al.  Separator Based Sparsification. I. Planary Testing and Minimum Spanning Trees , 1996, J. Comput. Syst. Sci..

[40]  Rolf Niedermeier,et al.  VERTEX COVER—AN ILLUSTRATIVE EXAMPLE , 2006 .

[41]  Naomi Nishimura,et al.  Characterizing Multiterminal Flow Networks and Computing Flows in Networks of Small Treewidth , 1998, J. Comput. Syst. Sci..

[42]  Russell Impagliazzo,et al.  Which problems have strongly exponential complexity? , 1998, Proceedings 39th Annual Symposium on Foundations of Computer Science (Cat. No.98CB36280).

[43]  Clyde L. Monma,et al.  Send-and-Split Method for Minimum-Concave-Cost Network Flows , 1987, Math. Oper. Res..

[44]  Erik Jan van Leeuwen,et al.  A deterministic polynomial kernel for Odd Cycle Transversal and Vertex Multiway Cut in planar graphs , 2018, STACS.

[45]  Dimitrios M. Thilikos,et al.  (Meta) Kernelization , 2009, 2009 50th Annual IEEE Symposium on Foundations of Computer Science.

[46]  Sairam Subramanian A Fully Dynamic Data Structure for Reachability in Planar Digraphs , 1993, ESA.

[47]  Erik D. Demaine,et al.  Subexponential parameterized algorithms on bounded-genus graphs and H-minor-free graphs , 2005, JACM.

[48]  Dániel Marx,et al.  A Tight Lower Bound for Planar Multiway Cut with Fixed Number of Terminals , 2012, ICALP.

[49]  Jianer Chen,et al.  An O(1.84k) parameterized algorithm for the multiterminal cut problem , 2013, Inf. Process. Lett..

[50]  Glencora Borradaile,et al.  Polynomial-Time Approximation Schemes for Subset-Connectivity Problems in Bounded-Genus Graphs , 2009, STACS.

[51]  Karol Borsuk,et al.  Sur les rétractes , 1931 .

[52]  Brenda S. Baker,et al.  Approximation algorithms for NP-complete problems on planar graphs , 1983, 24th Annual Symposium on Foundations of Computer Science (sfcs 1983).

[53]  Mihalis Yannakakis,et al.  The Complexity of Multiterminal Cuts , 1994, SIAM J. Comput..

[54]  Frank Harary,et al.  Graph Theory , 2016 .

[55]  Michal Pilipczuk,et al.  On Subexponential Parameterized Algorithms for Steiner Tree and Directed Subset TSP on Planar Graphs , 2017, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[56]  Klaus Weihrauch,et al.  The computational complexity of some julia sets , 2002, STOC '03.

[57]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[58]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[59]  Ondrej Suchý Extending the Kernel for Planar Steiner Tree to the Number of Steiner Vertices , 2015, IPEC.

[60]  Jesper Nederlof Fast Polynomial-Space Algorithms Using Möbius Inversion: Improving on Steiner Tree and Related Problems , 2009, ICALP.

[61]  Dimitrios M. Thilikos,et al.  Catalan structures and dynamic programming in H-minor-free graphs , 2008, SODA '08.

[62]  Siamak Tazari,et al.  Faster approximation schemes and parameterized algorithms on (odd-)H-minor-free graphs , 2012, Theor. Comput. Sci..

[63]  David Eppstein,et al.  Separator-Based Sparsification II: Edge and Vertex Connectivity , 1999, SIAM J. Comput..

[64]  David S. Johnson,et al.  The Rectilinear Steiner Tree Problem is NP Complete , 1977, SIAM Journal of Applied Mathematics.

[65]  R. Ravi,et al.  When trees collide: an approximation algorithm for the generalized Steiner problem on networks , 1991, STOC '91.

[66]  Marshall W. Bern,et al.  The Steiner Problem with Edge Lengths 1 and 2 , 1989, Inf. Process. Lett..

[67]  Piotr Sankowski,et al.  Improved algorithms for min cut and max flow in undirected planar graphs , 2011, STOC '11.

[68]  Mikkel Thorup,et al.  Rounding algorithms for a geometric embedding of minimum multiway cut , 1999, STOC '99.

[69]  Erik D. Demaine,et al.  The Bidimensionality Theory and Its Algorithmic Applications , 2008, Comput. J..

[70]  T. C. Hu,et al.  Multi-Terminal Network Flows , 1961 .

[71]  Dániel Marx,et al.  Data Reduction and Problem Kernels (Dagstuhl Seminar 12241) , 2012, Dagstuhl Reports.

[72]  Yoshio Okamoto,et al.  On Problems as Hard as CNF-SAT , 2011, 2012 IEEE 27th Conference on Computational Complexity.

[73]  Dániel Marx,et al.  Parameterized graph separation problems , 2004, Theor. Comput. Sci..

[74]  Saket Saurabh,et al.  Kernelization Lower Bounds Through Colors and IDs , 2014, ACM Trans. Algorithms.

[75]  Philip N. Klein,et al.  An O(n log n) approximation scheme for Steiner tree in planar graphs , 2009, TALG.