Linear CNF formulas and satisfiability

In this paper, we study linear CNF formulas generalizing linear hypergraphs under combinatorial and complexity theoretical aspects w.r.t. SAT. We establish NP-completeness of SAT for the unrestricted linear formula class, and we show the equivalence of NP-completeness of restricted uniform linear formula classes w.r.t. SAT and the existence of unsatisfiable uniform linear witness formulas. On that basis we prove NP-completeness of SAT for uniform linear classes in a resolution-based manner by constructing large-sized formulas. Interested in small witness formulas, we exhibit some combinatorial features of linear hypergraphs closely related to latin squares and finite projective planes helping to construct rather dense, and significantly smaller unsatisfiable k-uniform linear formulas, at least for the cases k=3,4.

[1]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs, III: Proof of the Existence Conjectures , 1975, J. Comb. Theory, Ser. A.

[2]  H. E. Slaught THE CARUS MATHEMATICAL MONOGRAPHS , 1923 .

[3]  H. Ryser,et al.  An extension of a theorem of de Bruijn and Erdös on combinatorial designs , 1968 .

[4]  Richard M. Wilson,et al.  A course in combinatorics , 1992 .

[5]  B. Bollobás Combinatorics: Set Systems, Hypergraphs, Families of Vectors and Combinatorial Probability , 1986 .

[6]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory A.

[7]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[8]  Ewald Speckenmeyer,et al.  A fast parallel SAT-solver — efficient workload balancing , 2005, Annals of Mathematics and Artificial Intelligence.

[9]  G. Winskel What Is Discrete Mathematics , 2007 .

[10]  Stefan Porschen,et al.  A CNF Class Generalizing Exact Linear Formulas , 2008, SAT.

[11]  Craig A. Tovey,et al.  A simplified NP-complete satisfiability problem , 1984, Discret. Appl. Math..

[12]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[13]  P. Hall On Representatives of Subsets , 1935 .

[14]  Renaud Palisse A short proof of fisher's inequality , 1993, Discret. Math..

[15]  Paul Erdős Some recent problems and results in graph theory , 1997 .

[16]  Allen Van Gelder,et al.  A perspective on certain polynomial-time solvable classes of satisfiability , 2003, Discret. Appl. Math..

[17]  Alexander Rosa,et al.  Topics on Steiner systems , 1980 .

[18]  Stefan Porschen,et al.  On Linear CNF Formulas , 2006, SAT.

[19]  H. Ryser Combinatorial Mathematics: THE PRINCIPLE OF INCLUSION AND EXCLUSION , 1963 .

[20]  Richard M. Wilson,et al.  An Existence Theory for Pairwise Balanced Designs II. The Structure of PBD-Closed Sets and the Existence Conjectures , 1972, J. Comb. Theory, Ser. A.

[21]  Shimon Even,et al.  An O (N2.5) algorithm for maximum matching in general graphs , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[22]  G. Tinhofer Graphen und Matrizen , 1976 .