Comprehensive performance re-assessment of TFETs with a novel design by gate and source engineering from device/circuit perspective

In this paper, a novel TFET design, called Pocket-mSTFET (PMS-TFET), is proposed and experimentally demonstrated by evaluating the performance from device metrics to circuit implementation for low-power SoC applications. For the first time, from circuit design perspective, TFETs performance in terms of ION, IOFF, subthreshold slope (SS), output behavior, capacitance, delay, noise and gain are experimentally benchmarked and also compared with MOSFET. By gate and source engineering without area penalty, the compatibly-fabricated PMS-TFET on SOI substrate shows superior performance with the minimum SS of 29mV/dec at 300K, high ION (~20μA/μm) and large ION/IOFF ratio (~108) at 0.6V. Largely alleviated super-linear onset issue, reduced Miller capacitance and delay, and much lower noise level were also experimentally obtained, as well as high effective gain. Circuit-level implementation based on PMS-TFET also shows significant improvement on energy efficiency and power reduction at VDD of 0.4V, which indicates great potential of this TFET design for low-power digital and analog applications.