Blow-up phenomena for a pseudo-parabolic equation with variable exponents

Abstract We consider a pseudo-parabolic equation with nonlinearities of variable exponent type u t − ν △ u t − div ( | ∇ u | m ( x ) − 2 ∇ u ) = | u | p ( x ) − 2 u , in Ω × ( 0 , T ) , associated with initial and Dirichlet boundary conditions. By means of a differential inequality technique, we obtain an upper bound for blow-up time if variable exponents p ( ⋅ ) , m ( ⋅ ) and the initial data satisfy some conditions. Also, a lower bound for blow-up time is determined under some other conditions.

[1]  Yan Liu,et al.  Asymptotic behaviour of solutions to some pseudoparabolic equations , 2012, Appl. Math. Lett..

[2]  Grzegorz Karch,et al.  Asymptotic Behaviour of Solutions to some Pseudoparabolic Equations , 1997 .

[3]  Jesús Ildefonso Díaz Díaz,et al.  Energy Methods for Free Boundary Problems: Applications to Nonlinear PDEs and Fluid Mechanics , 2001 .

[4]  M. Ruzicka,et al.  Electrorheological Fluids: Modeling and Mathematical Theory , 2000 .

[5]  Gérard A. Philippin,et al.  Blow-up phenomena for some nonlinear parabolic problems , 2008 .

[6]  Xiaoming Peng,et al.  Blow-up phenomena for some nonlinear pseudo-parabolic equations , 2016, Appl. Math. Lett..

[7]  Peng Luo Blow‐up phenomena for a pseudo‐parabolic equation , 2015 .

[8]  Mohammed Kbiri Alaoui,et al.  Computers and Mathematics with Applications ( ) – Computers and Mathematics with Applications a Blow-up Result for Nonlinear Generalized Heat Equation , 2022 .

[9]  Mohammad Bagher Ghaemi,et al.  Lower bounds for the blow-up time in a semilinear parabolic problem involving a variable source , 2014, Appl. Math. Lett..

[10]  Xianling Fan,et al.  Sobolev Embedding Theorems for Spaces Wk, p(x)(Ω) , 2001 .

[11]  Ralph E. Showalter,et al.  Existence and Representation Theorems for a Semilinear Sobolev Equation in Banach Space , 1972 .

[12]  Lawrence E. Payne,et al.  Lower bounds for blow-up time in parabolic problems under Dirichlet conditions , 2007 .

[13]  Julian Musielak,et al.  Orlicz Spaces and Modular Spaces , 1983 .

[14]  M. Ružička,et al.  Mathematical modeling of electrorheological materials , 2001 .

[15]  Runzhang Xu,et al.  Global existence and finite time blow-up for a class of semilinear pseudo-parabolic equations , 2013 .