Interface Properties of 4H-SiC ( $11\bar {2}0$ ) and ( $1\bar {1}00$ ) MOS Structures Annealed in NO

Interface properties of 4H-SiC (112̅0) and (11̅00) walls, the absence of junction FET resistance, and the higher metal-oxide-semiconductor (MOS) structures annealed in nitric oxide are characterized by conductance, high-low, and C-ψ<sub>s</sub> methods. Compared with 4H-SiC (0001) MOS structures, generation of very fast interface states by nitridation is much smaller in 4H-SiC (112̅0) and (11̅00). The effective mobility of planar MOSFETs fabricated on Al+-implanted p-body doped to 1×10<sup>17</sup> cm<sup>-3</sup> is 10<sup>3</sup> cm<sup>2</sup>/Vs on (11̅00), 92 cm<sup>2</sup>/Vs on (112̅0), and 20 cm<sup>2</sup>/Vs on (0001). The mobility-limiting factors are discussed on the basis of experimental results. The high channel mobilities for (112̅0) and (11̅00) MOSFETs can be correlated with the lower density of fast interface states generated by nitridation.

[1]  Hajime Okumura,et al.  Effects of interface state density on 4H-SiC n-channel field-effect mobility , 2014 .

[2]  J. Cooper,et al.  Limitations of the High - Low C - V Technique for MOS Interfaces With Large Time Constant Dispersion , 2013, IEEE Transactions on Electron Devices.

[3]  Tsunenobu Kimoto,et al.  Generation of very fast states by nitridation of the SiO[2]/SiC interface , 2012 .

[4]  Tsunenobu Kimoto,et al.  Accurate evaluation of interface state density in SiC metal-oxide-semiconductor structures using surface potential based on depletion capacitance , 2012 .

[5]  H. Sakairi,et al.  High performance SiC trench devices with ultra-low ron , 2011, 2011 International Electron Devices Meeting.

[6]  S. Dhar,et al.  Inversion layer carrier concentration and mobility in 4H–SiC metal-oxide-semiconductor field-effect transistors , 2010 .

[7]  Tsunenobu Kimoto,et al.  SiC technologies for future energy electronics , 2010, 2010 Symposium on VLSI Technology.

[8]  Tsunenobu Kimoto,et al.  4H‐SiC MISFETs with nitrogen‐containing insulators , 2009 .

[9]  V. Tilak Inversion layer electron transport in 4H‐SiC metal–oxide–semiconductor field‐effect transistors , 2009 .

[10]  T. Chow,et al.  Comparative study of 4H‐SiC and 2H‐GaN MOS capacitors and FETs , 2009 .

[11]  T. Kimoto,et al.  P-Channel MOSFETs on 4H-SiC {0001} and Nonbasal Faces Fabricated by Oxide Deposition and $\hbox{N}_{2}\hbox{O}$ Annealing , 2009, IEEE Transactions on Electron Devices.

[12]  T. Endo,et al.  High Channel Mobility of MOSFET Fabricated on 4H-SiC (11-20) Face Using Wet Annealing , 2008 .

[13]  J. Suehle,et al.  Time Dependence of Bias-Stress-Induced SiC MOSFET Threshold-Voltage Instability Measurements , 2008, IEEE Transactions on Electron Devices.

[14]  J. R. Williams,et al.  Electron capture and emission properties of interface states in thermally oxidized and NO-annealed SiO2/4H-SiC , 2008 .

[15]  Yukiharu Uraoka,et al.  Anomalously anisotropic channel mobility on trench sidewalls in 4H-SiC trench-gate metal-oxide-semiconductor field-effect transistors fabricated on 8° off substrates , 2007 .

[16]  Tsunenobu Kimoto,et al.  Interface Properties of Metal–Oxide–Semiconductor Structures on 4H-SiC{0001} and (1120) Formed by N2O Oxidation , 2005 .

[17]  H. Matsunami,et al.  Electronic behaviors of high-dose phosphorus-ion implanted 4H-SiC(0001) , 2004 .

[18]  J. R. Williams,et al.  Effect of nitric oxide annealing on the interface trap density near the conduction bandedge of 4H–SiC at the oxide/(112̄0) 4H–SiC interface , 2004 .

[19]  S. Suzuki,et al.  Excellent effects of hydrogen postoxidation annealing on inversion channel mobility of 4H-SiC MOSFET fabricated on (11 2 0) face , 2002, IEEE Electron Device Letters.

[20]  M. Melloch,et al.  Status and prospects for SiC power MOSFETs , 2002 .

[21]  O. W. Holland,et al.  Improved inversion channel mobility for 4H-SiC MOSFETs following high temperature anneals in nitric oxide , 2001, IEEE Electron Device Letters.

[22]  J. Cooper,et al.  Anomalously High Density of Interface States Near the Conduction Band in SiO2/4H-SiC MOS Devices , 2000 .

[23]  H. Matsunami,et al.  4H-SiC (11-20) Epitaxial Growth , 2000 .

[24]  Y. Sugawara,et al.  High channel mobility in inversion layers of 4H-SiC MOSFETs by utilizing (112~0) face , 1999, IEEE Electron Device Letters.

[25]  M. Melloch,et al.  High-voltage accumulation-layer UMOSFET's in 4H-SiC , 1998, IEEE Electron Device Letters.

[26]  T. Ouisse,et al.  Electron Transport at the SiC/SiO2 Interface , 1997 .

[27]  V. Afanas’ev,et al.  Intrinsic SiC/SiO2 Interface States , 1997 .

[28]  Tsunenobu Kimoto,et al.  Step‐Controlled Epitaxial Growth of High‐Quality SiC Layers , 1997 .

[29]  J. J. A. Cooper,et al.  Advances in SiC MOS Technology , 1997 .

[30]  H. B. Harrison,et al.  Nitridation of silicon-dioxide films grown on 6H silicon carbide , 1997, IEEE Electron Device Letters.

[31]  B. J. Baliga,et al.  Comparison of 6H-SiC, 3C-SiC, and Si for power devices , 1993 .

[32]  N. Saks Hall Effect Studies of Electron Mobility and Trapping at the SiC/SiO2 Interface , 2004 .